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Abstract 

The current methods used to solve stochastic PERT networks overlook the true 

distribution of the maximum of two distributions and thus fail to compute an accurate 

estimation of the project completion time. This dissertation presents two different 

methods to solve stochastic PERT networks. With each method, both by using 

mixtures of Gaussians and also by using mixtures of truncated exponentials, the 

distribution of the maximum of two distributions can be approximated accurately.  

 In the first method a PERT network is first transformed into a MoG Bayesian 

network and then Lauritzen-Jensen algorithm is used to make inferences in the 

resulting MoG Bayesian network. The transformation process involves approximating 

non-Gaussian distributions using MoG’s, finding maximum of two distributions using 

MoG’s. As PERT networks are transformed into MoG Bayesian networks arc 

reversals may also become necessary since MoG Bayesian networks does not allow 

discrete variables to have continuous parents. This dissertation presents arc reversals 

in hybrid Bayesian networks with deterministic variables between every possible pair 

of variables.  

 In the second stage of the research MTE Bayesian networks are introduced as an 

alternative for solving stochastic PERT networks. We demonstrated the easy 

applicability of MTE potentials by finding the marginal probability distribution of a 

PERT example using MTE’s. This calculation process involves the conversion of the 

PERT network into a PERT Bayes net, transformation of the PERT Bayes net into a 

MTE network and finally propagation of the MTE potentials using the Shenoy-Shafer 
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architecture. Finding the distribution of the maximum of two distributions using 

MTE’s is described as an operation necessary to propagate in MTE PERT networks. 

 The second essay of this dissertation discusses a potential application of radio 

frequency identification (RFID) and collaborative filtering for targeted advertising in 

grocery stores. Every day hundreds of items in grocery stores are marked down for 

promotional purposes. Whether these promotions are effective or not depends 

primarily on whether the customers are aware of them or not and secondarily whether 

the products on promotion are products in which the customer will be interested. 

Currently, the companies are relatively incapable of influencing the customers’ 

decision-making process while they are shopping. However, the capabilities of RFID 

technology enable us to transfer the recommendation systems of e-commerce to 

grocery stores. In our model, using RFID technology, we get real time information 

about the products placed in the cart during the shopping process. Based on that 

information we inform the customer about those promotions in which the customer is 

likely to be interested in. The selection of the product advertised is a dynamic 

decision making process since it is based on the information of the products placed 

inside the cart while customer is shopping. Collaborative filtering is used for the 

identification of the advertised product and Bayesian networks will be used for the 

application of collaborative filtering. We are assuming a scenario where all products 

have RFID tags, and grocery carts are equipped with RFID readers and screens that 

would display the relevant promotions. We present our model first using the data set 

available for the Netflix prize competition. As the second stage of the research we use 
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grocery data set and develop a new heuristic to select the products to be used in the 

Bayesian network created. 
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1 REVIEW OF PROJECT EVALUATION AND REVIEW 

TECHNIQUE 

1.1  PERT Networks 

Program Evaluation and Review Technique (PERT) was invented in 1958 for the 

POLARIS missile program by the Program Evaluation branch of the Special Projects 

Office of the U. S. Navy, assisted by consultants from Booz, Allen and Hamilton 

[Malcolm et al. 1959]. A parallel technique called Critical Path Method (CPM) was 

invented around the same time by Kelley and Walker [1959]. Both PERT and CPM 

are project management techniques whose main goal is to manage the completion 

time of a large project consisting of many activities with precedence constraints, i.e., 

constraints that specify other activities that need to be completed prior to starting an 

activity. 

 In PERT, a project is represented by a directed acyclic network where the nodes 

represent duration of activities and the arcs represent precedence constraints. In 

classical PERT, duration of activities are assumed to be known constants, and the task 

is to identify a “critical path” from start-time to finish-time such that the project 

completion time is the sum of the duration of the activities on the critical path. These 

activities are called critical, since a project could be delayed if these activities were 

not completed in the scheduled time. In stochastic PERT, activities are considered as 

random variables with probability distributions, and the main task is to compute the 

marginal probability distribution of the project completion time. 
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 The problem of computing the marginal probability distribution of the project 

completion time is a difficult problem. Thus many approximate techniques have been 

developed. A classic solution proposed by Malcolm et al. [1959] is to assume that all 

activities are independent random variables and that each activity has an approximate 

beta distribution parameterized by three parameters: mean time m, minimum 

(optimistic) completion time a, and maximum (pessimistic) completion time b. The 

expected duration of each activity is then approximated by (a + 4m + b)/6, and its 

variance is approximated by (b – a)2/36. Using the expected duration times, the 

critical path is computed using the classical deterministic method. Assuming 

independence, the mean and variance of the distribution of the project completion 

time is then approximated as the sum of the expected durations and the sum of 

variances of the activities on a critical path. 

 Another approximation is to assume that all activity durations are independent 

and have the Gaussian distribution [Sculli 1983]. The completion time of an activity i 

is given by Ci = Max{Cj | j ∈Π(i)} + Di, where Cj denotes the completion time of 

activity j, Dj denotes the duration of activity j, and Π(i) denotes the parents 

(immediate predecessors) of activity i. The maximum of two independent Gaussian 

random variables is not Gaussian. However, the distribution of Ci is assumed to be 

Gaussian with the parameters estimated from the parameters of the parent activities. 

Depending on the values of the parameters, this assumption can lead to large errors. 

 Kulkarni and Adlakha [1986] compute the distribution and moments of project 

completion time assuming that the activity durations are independent and having the 



www.manaraa.com

 
 

10

exponential distribution with finite means. They call such stochastic PERT networks 

Markov networks. 

 If we don’t assume independence of activity durations, the problem of computing 

the marginal distribution of the project completion time becomes computationally 

intractable for large projects. One solution to this problem is to use Monte Carlo 

techniques with variance reduction techniques to estimate the distribution of project 

completion time or its moments [Van Slyke 1963, Burt and Garman 1971, Garman 

1972, Sigal et al. 1979, Fishman 1985]. Another solution is to provide lower bounds 

for the expected project completion time [see e.g., Elmaghraby 1967, Fulkerson 1962, 

and Robillard 1976]. Elmaghraby [1977] provides a review of Monte Carlo and 

bounding techniques. 

 Jenzarli [1995] suggests the use of Bayesian networks to model the dependence 

between activity durations and completions in a project. Following Jenzarli, we will 

first transform PERT networks into PERT Bayesian networks. Afterward we will 

approximate it by a mixture of Gaussians (MoG) Bayes net, and then use the 

Lauritzen-Jensen algorithm to make exact inferences in the MoG Bayes net. 

 The next sections provide information about Bayesian networks and how to 

transform a stochastic PERT network into a Bayesian network. 

1.2  Bayesian Networks 

A Bayesian network is a directed acyclic graph where nodes represent the variables 

and the arcs represent the conditional independencies between the variables. If there 



www.manaraa.com

 
 

11

is a directed arc from a variable X1  to a variable X2 then we call X1 as the parent of X2 

and X2  as the child of X1. Each variable in a Bayesian network X1, …, XN  possess a 

probability distribution given its parents and the product of these conditional 

probability distributions constitute the joint probability distribution of the network.

 ))(|(),...,(
1

1 i

N

i
iN XPaXPXXP ∏

=

=  (1.1) 

 Jenzarli [1995] suggests the use of Bayesian networks to model the dependence 

between activity durations and completions in a project. However, such Bayesian 

networks are difficult to solve exactly since they may contain a mix of discrete and 

continuous random variables. The solution recommended by Jenzarli is to use 

Markov chain Monte Carlo techniques to estimate the marginal distribution of project 

completion time.  

 Bayesian networks containing a mix of discrete (with a countable number of 

outcomes) and continuous (real-valued) chance variables are called Hybrid Bayesian 

networks. Shenoy [2006] describes a new technique for “exact” inference in hybrid 

Bayesian networks using mixture of Gaussians. This technique consists of 

transforming a general hybrid Bayesian network to a mixture of Gaussians Bayesian 

network.  

 In chapter 2, we explore the use of exact inference in hybrid Bayesian networks 

using mixture of Gaussians proposed by Shenoy [2006] to compute the exact 

marginal distribution of project completion time. Activities durations can have any 

distribution, and may not be all independent. We model dependence between 
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activities using a Bayesian network as suggested by Jenzarli [1995]. We approximate 

non-Gaussian conditional distributions by mixture of Gaussians, and we reduce the 

resulting hybrid Bayesian network to a mixture of Gaussian Bayesian networks. Such 

hybrid Bayesian networks can be solved exactly using the algorithm proposed by 

Lauritzen and Jensen [2001], which is implemented in Hugin, a commercially-

available software package. In the following section we illustrate our approach using 

a small PERT network with five activities. 

1.3  Representing Stochastic PERT Network as Bayesian Network 

Consider a PERT network as shown in Figure 1.1 with five activities, A1, …, A5. S 

denotes project start time, and F denotes project completion time. The directed arrows 

in a PERT network denote precedence constraints. The precedence constraints are as 

follows. A3 and A5 can only be started after A1 is completed, and A4 can only be started 

after A2 and A3 are completed. The project is completed after all five activities are 

completed. 

A1

A2

A3

A5

A4

S F

A1

A2

A3

A5

A4

S F

 
Figure 1.1: A stochastic PERT network with five activities. 
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 Using the technique described in Jenzarli [1995], we will describe the 

dependencies of the activities by a Bayesian network. Let Di denote the duration of 

activity i, and let Ci denote the earliest completion time of activity i. Let C23 denote 

earliest completion time of activities 2 and 3. Since our goal is to compute the 

marginal distribution of the earliest completion time of the project, we will assume 

that each activity will be started as soon as possible (after completion of all preceding 

activities). Also, we assume that S = 0 (with probability 1). 

 The interpretation of PERT networks as Bayes Nets allows us to depict the 

activity durations that are dependent on each other. For instance, in the current 

example durations of activities 1 and 3 and durations of activities 2 and 4 are 

positively correlated. Considering the dependencies between the activities, we 

convert the PERT network to a Bayes net following three basic steps. First activity 

durations are replaced with activity completion times, second activity durations are 

added with an arrow from Di to Ci so that each activity is represented by two nodes. 

However, notice that the activities 1 and 2 are represented just by their durations, as 

D1 and D2. The reason for that is that they are starting activities and since they do not 

have any predecessors, the completion times of the activities will be the same as their 

durations. As the last step we represent the dependence between durations by arc, so 

an arc is added from D1 to D3 and from D2 to D4. The resulting PERT Bayes net 

representation of the PERT network is illustrated in Figure 1.2 below.  
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D3|d1 ~ N(5 + 2d1, 4)

D1

D2

D3 C3

C5

D5

C23

D4

F F = Max{C4, C5}

C5 = D1 + D5

C23 = Max{D2, C3}

C3 = D1 + D3

D1 ~ N(3, 1)

D5 ~ E(25)

D2 ~ N(14, 9)

D4|d2 ~ N(1 + d2, 16)

C4 C4 = C23 + D4

D3|d1 ~ N(5 + 2d1, 4)

D1

D2

D3 C3

C5

D5

C23

D4

F F = Max{C4, C5}

C5 = D1 + D5

C23 = Max{D2, C3}

C3 = D1 + D3

D1 ~ N(3, 1)

D5 ~ E(25)

D2 ~ N(14, 9)

D4|d2 ~ N(1 + d2, 16)

C4 C4 = C23 + D4

 
Figure 1.2: A Bayes net representation of the dependencies of the activities in the 

PERT network of Figure 1.1. 

1.4  Summary and Conclusions 

This chapter illustrates methods that are used and proposed in the literature for 

solving stochastic PERT networks. In this scope, we talked about the problems 

involved with these methods and discussed the restrictive assumptions made in the 

literature.  

 We demonstrated how to represent a PERT network as a Bayesian network using 

Jenzarli’s method which allows us to model the dependencies between the activities 

and serves as a base for the next step of this research where we explore the use of 

exact inference in hybrid Bayesian networks using mixtures of Gaussians proposed 

by Shenoy [2006] to compute the exact marginal distribution of project completion 

time. 
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2 SOLVING STOCHASTIC PERT NETWORKS USING 

MIXTURES OF GAUSSIANS 

2.1  Mixtures of Gaussians Bayesian Networks 

Mixtures of Gaussians (MoG) hybrid Bayesian networks were initially studied by 

Lauritzen [1992]. These are Bayesian networks with a mix of discrete and continuous 

variables. The discrete variables cannot have continuous parents, and all continuous 

variables have the so-called conditional linear Gaussian distributions. This means that 

the conditional distributions at each continuous node have to be Gaussian such that 

the mean is a linear function of its continuous parents, and the variance is a constant. 

MoG Bayesian networks have the property that for each instantiation of the discrete 

variables, the joint conditional distribution of the continuous variables is multivariate 

Gaussian. Hence the name ‘mixtures of Gaussians.’ An example of a MoG Bayesian 

network is as shown in Figure 2.1. 

B

C1 C2

P(b1) = 0.5
P(b2) = 0.5

C1|b1 ~ N(0, 1)
C1|b2 ~ N(1, 4)

C2|(b1, c1) ~ N(1 + 2c1, 2)
C2|(b2, c1) ~ N(2 + 3c1, 3)

B

C1 C2

P(b1) = 0.5
P(b2) = 0.5

C1|b1 ~ N(0, 1)
C1|b2 ~ N(1, 4)

C2|(b1, c1) ~ N(1 + 2c1, 2)
C2|(b2, c1) ~ N(2 + 3c1, 3)

 
Figure 2.1: An example of a MoG Bayes net. 
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 Consider the Bayes Net shown in Figure 1.2. It is not a MoG Bayesian network 

since D5 has a non-Gaussian distribution, and C23 and F have a non-linear conditional 

Gaussian distribution. 

 Using the method described in Shenoy [2006] the non-Gaussian distributions and 

the non-linear Gaussian distributions can be approximated using Mixtures of 

Gaussians. In the process of doing so, we may create discrete variables with 

continuous parents. In this case, arc reversals become necessary to convert the 

resulting hybrid Bayesian network to a MoG Bayesian network. In the next section 

arc reversals between every possible kind of pairs of variables will be described. 

Following that it will be explained how we can approximate a non-Gaussian 

distribution by a MoG distribution, and how we can approximate a max deterministic 

function by a MoG distribution, for which the use of arc reversals will be necessary.  

2.2  Arc Reversals in Hybrid Bayesian Networks 

If we have a general hybrid Bayesian network containing a discrete variable with 

continuous parents, then one method of transforming such a network to a MoG 

Bayesian network is to do arc reversals. If a continuous variable has a non-CLG 

distribution, then we can approximate it with a MoG distribution. In the process of 

doing so, we may create a discrete variable with continuous parents. In this case, arc 

reversals are again necessary to convert the resulting hybrid Bayesian network to a 

MoG Bayesian network. Arc reversals are also used to solve influence diagrams, 

which are Bayesian networks with decision and utility nodes. Although there are no 
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exact algorithms to solve hybrid influence diagrams (containing a mix of discrete and 

continuous chance variables), a theory of arc reversals is potentially useful in this 

endeavor. 

 Arc reversals were pioneered by Olmsted [1984] for solving discrete influence 

diagrams. They were further studied by Shachter [1986, 1988, 1990] for solving 

discrete influence diagrams, finding posterior marginals in Bayesian networks, and 

for finding relevant sets of variables for an inference problem. Kenley [1986] 

generalized arc reversals in influence diagrams with continuous variables having 

conditional linear Gaussian distributions (see also Shachter and Kenley [1989]). 

Poland (1994) further generalized arc reversals in influence diagrams with Gaussian 

mixture distributions. Although there are no exact algorithms to solve general hybrid 

influence diagrams (containing a mix of discrete and continuous chance variables), a 

theory of arc reversals is potentially useful in this endeavor. 

 Hybrid Bayesian networks containing deterministic variables with continuous 

parents pose a special problem since the joint density for all continuous variables 

does not exist. Thus, a method for propagating density potentials would need to be 

modified to account for the non-existence of the joint density.[Cobb and Shenoy 

2005, 2006b, 2007] 

2.2.1 Notation 

In this section we will describe the notation and definitions used in this research. The 

notation and definitions are adapted from Cobb and Shenoy [2005]. 
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 Variables and States. We are concerned with a finite set V of variables. Each 

variable X ∈ V is associated with a set of its possible states denoted by ΩX. If ΩX is a 

countable set, finite or infinite, we say X is discrete, and depict it by a rectangular 

node in a graph; otherwise X is said to be continuous and is depicted by an oval node. 

 In a Bayesian network, each variable is associated with a conditional distribution 

for each state of its parents. A conditional distribution function associated with a 

continuous variable is said to be deterministic if its values are in units of probability 

mass. For simplicity, we will refer to continuous variables with non-deterministic 

conditionals as continuous, and continuous variables with deterministic conditionals 

as deterministic. Deterministic variables are represented as oval nodes with a double 

border in a graph. 

 We will assume that the state space of continuous variables is the set of real 

numbers (or some subset of it) and that the states of a discrete variable are symbols. If 

r ⊆ V, then Ωr = ×{ΩX | X ∈ V}. 

 Potentials. In a Bayesian network, each variable is associated with a conditional 

probability function given its parents and these are represented by functions called 

potentials. If X is discrete, it is associated with a discrete potential. Formally, suppose 

r is a set of variables that contains a discrete variable. A discrete potential ρ for r is a 

function ρ: Ωr → [0, 1]. The values of discrete potentials are in units of probability 

mass. 

 Although the domain of the function ρ is Ωr, for simplicity, we will refer to r as 

the domain of ρ. Thus the domain of a potential representing the conditional 
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probability mass function associated with some variable X in a Bayesian network is 

always the set {X}∪pa(X), where pa(X) denotes the set of parents of X. The set pa(X) 

may contain continuous variables. 

 Continuous non-deterministic variables are typically associated with conditional 

density functions, which are represented by functions called density potentials. 

Formally, suppose r is a set of variables that contains a continuous variable. A density 

potential ρ for r is a function ρ: Ωr → Ρ+. The values of density potentials are in units 

of probability density. 

 Deterministic variables are associated with conditional distributions containing 

equations and whose values are in units of probability mass. We will call such 

functions equation potentials. Formally, suppose x = r∪s is a set of variables 

containing some discrete variables r and some continuous variables s. We assume  

s ≠ ∅. An equation potential ξ for x is a function ξ: Ωx → [0, 1] such that ξ(r, s) is of 

the form Σ{pi(r, s) [Z = gr,i(s\{Z})](s) | i = 1, …, n}, where [Z = gr,i(s\{Z})] are 

indicator functions such that [Z = gr,i(s\{Z})](s) = 1 if z = gr,i(s\{z}), and = 0 

otherwise, and pi(r, s) have units of probability mass, for all i = 1, …, n. The values of 

equation potentials are in units of probability mass. Suppose Y is a deterministic 

variable with continuous parent X, and suppose that the deterministic relationship is 

Y|x = x with probability ½ and Y|x = 0 with probability ½. This distribution is 

represented by the equation potential ½ [Y = X] + ½ [Y = 0] for {X, Y}, where 

[Y = X](x, y) = 1 if y = x, and = 0 otherwise, and [Y = 0](y) = 1 if y = 0, and = 0 

otherwise. Notice that our definition of deterministic variables is slightly more 
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inclusive than the usual definition of variables whose conditional distributions have 

zero variances. It includes conditional distributions as above with probability masses, 

which have non-zero variances. 

 Both density and equation potentials are special instances of a broader class of 

potentials called continuous potentials. Suppose z is a set of variables containing a 

continuous variable. Then a continuous potential ζ for z is a function  

ζ: Ωx → [0, 1]∪Ρ+. The values of ζ may have units of probability mass (in [0, 1]) or 

probability density (in Ρ+). For example, consider a continuous variable X with a 

mixed distribution: a probability mass of 0.5 at X = 0, and a probability density of 

0.5 f, where f is a probability density function whose values are in units of probability 

density. This mixed distribution can be represented by a continuous potential ξ for 

{X} as follows: ξ(x) = 0.5 [X = 0](x) + 0.5 f(x). The first part has units of probability 

mass and the second part has units of probability density. When we wish to be 

explicit about this, we will write ξ(x) = 0.5 [X = 0](x) (m) + 0.5 f(x) (d). 

 As we will see shortly, the combination of two density potentials is a density 

potential, the combination of two equation potentials is an equation potential, and the 

combination of two continuous potential is a continuous potential. Also, continuous 

potentials can result from the marginalization and division operations. These 

operations will be defined shortly. 
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Z

X|(d1 ,  z) = z with prob. 1
X|(d2 ,  z) = 0 with prob. 1

Z ~ f(z)P(d1) = 0.5 
P(d2) = 0.5

X

D Z

X|(d1 ,  z) = z with prob. 1
X|(d2 ,  z) = 0 with prob. 1

Z ~ f(z)P(d1) = 0.5 
P(d2) = 0.5

X

D

 
Figure 2.2: A Bayesian network with a discrete, a continuous and a deterministic 

variable 

 Consider the BN given in Figure 2.2. In this BN, D is a discrete variable with two 

states d1 and d2 with the discrete distribution P(d1) = 0.5, P(d2) = 0.5. Z is a 

continuous variable with a probability density function (PDF) f. X is a deterministic 

variable with the conditional distribution X|(d1, z) = z with probability 1, and X|(d2, z) 

= 0 with probability 1. Let δ denote the discrete potential for {D} associated with D. 

Then, δ(d1) = 0.5 and δ(d2) = 0.5, Let ζ be the density potential for {Z} associated 

with Z. Then, ζ(z) = f(z). Let ξ denote the equation potential for {D, Z, X} associated 

with X. Then, ξ(d1, z, x) = [X = Z](z, x) and ξ(d2, z, x) = [X = 0](x). 

 Next, we define three operations associated with potentials, combination, 

marginalization, and division. Before we define combination of potentials, we need to 

define projection of states. Suppose y is a state of variables in r, and suppose s ⊆ r. 

Then the projection of y to s, denoted by y↓s is the state of s obtained from y by 

dropping states of r\s. Thus, (w, x, y, z)↓{W, X} = (w, x), where w ∈ ΩW, and x ∈ ΩX. If s 

= r, then y↓s = y. 
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 Combination. Suppose α is a potential (discrete or continuous) for a, and β is a 

potential (discrete or continuous) for b. Then the combination of α and β, denoted by 

α⊗β, is the potential for a∪b obtained from α and β by pointwise multiplication, i.e., 

(α⊗β)(x) = α(x↓a) β(x↓b) for all x ∈ Ωa∪b. If α and β are both discrete potentials, then 

α⊗β is a discrete potential. If α and β are both density potentials, then α⊗β is a 

density potential. If α and β are both equation potentials, then α⊗β is an equation 

potential. And if α and β are both continuous potentials, then α⊗β is a continuous 

potential. 

 Combination of potentials (discrete or continuous) is commutative (α⊗β = β⊗α) 

and associative ((α⊗β)⊗γ = α⊗(β⊗γ)). The identity potential ιr for r has the property 

that given any potential α for s ⊇ r, α⊗ιr = α. 

 Marginalization. The definition of marginalization of potentials (discrete or 

continuous) depends on the variable being marginalized. Suppose χ is a potential 

(discrete or continuous) for c, and suppose D is a discrete variable in c. Then the 

marginal of χ by removing D, denoted by χ−D, is the potential for c\{D} obtained 

from χ by addition over the states of D, i.e., χ−D(x) = ∑{χ(d, x) | d ∈ ΩD} for all x 

∈ Ωc\{D}. 

 Suppose χ is a potential (discrete or continuous) for c and suppose X is a 

continuous variable in c. Then the marginal of χ by removing X, denoted by χ−X, is 

the potential for c\{X} obtained from χ by integration over the states of X, i.e., χ−X(y) 

= ∫ χ(x, y) dx for all y ∈ Ωc\{X}. If χ contains no equations in X, then the integral is the 
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usual Riemann integral, and integration is done over ΩX. If χ contains an equation in 

X, then the integral is the generalized Riemann integral (also called Riemann-Stieltjes 

integral), which is defined as follows. First, we solve for X using one of the equations, 

substitute the solution for X in the other equations and functions (if any), discard the 

equation used for solving for X, and use the Jacobian as a normalization term when 

densities are involved. Some examples of generalized Riemann integration are as 

follows. 

 ∫ [X = c](x) (m) dx = 1 (m). 

 ∫ [Y = g(X), Z = h(X)](x, y, z) (m) dx = [Z = h(g−1(Y))](y, z) (m), assuming g is 

invertible on ΩX. 

 ∫ [X = c](x) f(x) dx = f(c) (d), assuming f is a density function. 

 ∫ [Y = g(X)](x, y) f(x) dx = |(d/dy)(g−1(y))| f(g−1(y)) (d), assuming f is a density 

function, and g is invertible and differentiable on ΩX. |(d/dy)(g−1(y))| is called 

the Jacobian. 

 ∫ [Y = g(X), Z = h(X)](x, y, z) f(x) dx = [Z =  

h(g−1(Y))](y, z) |(d/dy)(g−1(y))| f(g−1(y)) (d), assuming f is a density function, 

and g is invertible and differentiable on ΩX. 

 In a Bayesian network, each variable X is associated with a conditional 

probability function for X given its parents, pa(X). This conditional probability 

function is represented by a potential for {X}∪pa(X) called the conditional associated 

with X. 
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 If α is a conditional potential associated with A, and its domain is a (i.e., a = 

{A}∪pa(X)), then α−A is an identity potential for a\{A} = pa(X), the parents of A, i.e., 

if β is any potential whose domain contains a\{A}, then α−A⊗β = β. 

 To reverse an arc (X, Y) in a Bayesian network, we compute the marginal 

(ξ⊗ψ)−X, where ξ is the potential associated with X (representing the conditional for 

X given pa(X)), and ψ is the potential associated with Y (representing the conditional 

for Y given pa(Y)). The potential (ξ⊗ψ)−X represents the conditional for Y given 

pa(X)∪pa(Y)\{X}, and its nature (discrete or continuous) depends on Y. Thus, if Y is 

discrete, then (ξ⊗ψ)−X is a discrete potential, and if Y is continuous or deterministic, 

then (ξ⊗ψ)−X is a continuous potential. Furthermore, if ξ and ψ are both equation 

potentials, or if ξ is discrete and ψ is an equation potential, then (ξ⊗ψ)−X is an 

equation potential. In both of these cases, the units of (ξ⊗ψ)−X are in probability 

mass. In all other cases (see Table 2.1), (ξ⊗ψ)−X is a density potential. 



www.manaraa.com

 
 

25

Table 2.1. The nature of the (ξ⊗ψ)−X potential associated with Y 

If ξ assoc. with X is: and ψ assoc. 

with Y is: 
then (ξ⊗ψ)−X assoc. with Y 

is: 

discrete, density, or equation discrete discrete 

equation equation equation 

discrete equation equation 

density density density 

density equation density 

equation density density 

discrete density density 

 Divisions. Arc reversals involve divisions of potentials, and the potential in the 

denominator is always a marginal of the potential in the numerator. Suppose (X, Y) is 

a reversible arc in a Bayesian network, suppose ξ is a potential for {X}∪pa(X) 

associated with X, and suppose ψ is a potential for {Y}∪pa(Y) associated with Y. 

After reversing the arc (X, Y), the revised potential associated with X is 

(ξ⊗ψ)%(ξ⊗ψ)−X. The definition of (ξ⊗ψ)%(ξ⊗ψ)−X is as follows. If ξ is a density 

potential (for {X}∪pa(X)) and ψ is an equation potential (for {Y}∪pa(Y)), then 

(ξ⊗ψ)%(ξ⊗ψ)−X = ψ. In all other cases, (ξ⊗ψ)%(ξ⊗ψ)−X is a potential for 

{Y}∪pa(X)∪pa(Y) obtained from (ξ⊗ψ) and (ξ⊗ψ)−X by point-wise division, i.e., 

((ξ⊗ψ)%(ξ⊗ψ)−X)(x, y, r, s, t) = (ξ⊗ψ)(x, y, r, s, t) / ((ξ⊗ψ)−X)(y, r, s, t) for all 

x ∈ ΩX, y ∈ ΩY, r ∈ Ωpa(X)\pa(Y), s ∈ Ωpa(X)∩pa(Y), t ∈ Ωpa(Y)\({X}∪pa(X)). Notice that if 

((ξ⊗ψ)−X)(y, r, s, t) = 0, then (ξ⊗ψ)(x, y, r, s, t) = 0. In this case, we will simply 

define 0/0 as 0. 
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 The quotient (ξ⊗ψ)%(ξ⊗ψ)−X represents the conditional for X given 

pa(X)∪pa(Y)∪{Y}, and its nature depends on X. Thus, if X is discrete, then 

(ξ⊗ψ)%(ξ⊗ψ)−X is a discrete potential, and if X is continuous or deterministic, then 

(ξ⊗ψ)%(ξ⊗ψ)−X is a continuous potential. More specifically, the nature of 

(ξ⊗ψ)%(ξ⊗ψ)−X is as described in Table 2.2. 

Table 2.2: The nature of the (ξ⊗ψ)%(ξ⊗ψ)−X potential associated with X 

If ξ  

assoc. with X is: 

and ψ  

assoc. with Y is: 

then (ξ⊗ψ)−X 

assoc. with Y is: 

and 

(ξ⊗ψ)%(ξ⊗ψ)−X  

assoc. with X is: 

discrete discrete discrete discrete 

discrete density density discrete 

discrete equation equation discrete 

density discrete discrete density 

density density density density 

density equation density equation 

equation discrete discrete equation 

equation density density equation 

equation equation equation equation 

 The rationale for the separate definition of division for the case where ξ is a 

density potential and ψ is an equation potential is as follows. Consider the Bayesian 

network shown in Figure 2.3 consisting of two continuous variables X and Y, where X 

has PDF f(x), and Y is a deterministic function of X, say Y|x = g(x) with probability 1, 

where g is invertible and differentiable in Ωx. Let ξ and ψ denote the density and 

equation potentials associated with X and Y, respectively. Then ξ(x) = f(x), and ψ(x, y) 

= [Y = g(X)](x, y). After reversal of the arc (X, Y), the revised potential associated 
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with Y is ψ′(y) = (ξ⊗ψ)−X(y) = ∫ f(x) [Y = g(X)](x, y) dx = |(d/dy)(g−1(y))| f(g−1(y)). The 

Jacobian term |(d/dy)(g−1(y))| in the potential ψ′ is a consequence of expressing the 

conditional for X in units of probability density, and the conditional for Y in units of 

probability mass. If we had expressed the conditional for X in units of probability 

mass by using the cumulative distribution function (CDF) F(x), then a Jacobian term 

would not have been required—the CDF of Y is given by P[Y ≤ y] = P[g(X) ≤ y] = 

P[X ≤ g−1(y)] = F(g−1(y)). After arc reversal, the revised potential associated with X is 

ξ′ = (ξ⊗ψ)%(ξ⊗ψ)−X. The numerator of this expression, ξ⊗ψ, does not have any 

probabilistic semantics since ξ has units of probability density and ψ has units of 

probability mass. However, if we define the division of potentials so that the Jacobian 

term in the denominator disappears, we would obtain the correct results. Thus, 

ξ′(x, y) = (ξ⊗ψ)(x, y)/(ξ⊗ψ)−X(y) = f(x) [Y = g(X)](x, y) / (|(d/dy)(g−1(y))| f(g−1(y))) 

= [Y = g(X)](x, y) = [X = g−1(Y)](x, y), 

which is an equation potential. Also, we would have to ignore the Jacobian term in 

the combination so that ξ⊗ψ = ξ′⊗ψ′, i.e., f(x) [Y = g(X)](x, y) = 

[X = g−1(Y)](x, y) |(d/dy)(g−1(y))| f(g−1(y)). 

X

Y

f(x)

[Y = g(X)](x, y) 

X

Y

[X = g–1(Y)](x, y)

|(d/dy)(g–1(y))| f(g–1(y))

X

Y

f(x)

[Y = g(X)](x, y) 

X

Y

f(x)

[Y = g(X)](x, y) 

X

Y

[X = g–1(Y)](x, y)

|(d/dy)(g–1(y))| f(g–1(y))

X

Y

[X = g–1(Y)](x, y)

|(d/dy)(g–1(y))| f(g–1(y))
 

Figure 2.3. Arc reversal between a continuous and a deterministic variable. 
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2.2.2 Arc Reversals 

This section describes arc reversals between every possible kind of pairs of variables. 

Given a Bayesian network graph, i.e., a directed acyclic graph, there always exists a 

sequence of variables such that whenever there is an arc (X, Y) in the network, X 

precedes Y in the sequence. An arc (X, Y) can be reversed only if there exists a 

sequence such that X and Y are adjacent in this sequence. 

 In a Bayesian network, each variable is associated with a conditional potential 

representing the conditional distribution for it given its parents. A fundamental 

assumption of Bayesian network theory is that the combination of all the conditional 

potentials is the joint distribution of all variables in the network. Suppose (X, Y) is an 

arc in a Bayesian network such that X and Y are adjacent, and suppose ξ and ψ are the 

potentials associated with X and Y, respectively. Let pa(X) = r∪s, and pa(Y) = s∪t. 

Since X and Y are adjacent, the variables in r∪s∪t precede X and Y in a sequence 

compatible with the arcs. Then ξ⊗ψ represents the conditional joint distributions of 

{X, Y} given r∪s∪t, (ξ⊗ψ)−X represents the conditional distributions of Y given 

r∪s∪t, and (ξ⊗ψ)%(ξ⊗ψ)−X represents the conditional distributions of X given 

r∪s∪t∪{Y}. If the arc (X, Y) is reversed, the potentials ξ and ψ associated with X and 

Y are replaced by potentials ξ′ = (ξ⊗ψ)%(ξ⊗ψ)−X, and ψ′ = (ξ⊗ψ)−X, respectively. 

This general case is illustrated in Figure 2.4. Although X and Y are shown as 

continuous nodes, they can each be discrete or deterministic. 
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ψ′ = (ξ⊗ψ)–X
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Y

r

s

t

X

ψ′ = (ξ⊗ψ)–X

ξ′ = (ξ⊗ψ)%(ξ⊗ψ)–X

Y

r

s

t

X

 
Figure 2.4. Reversal of arc (X, Y) 

 Some observations about the arc reversal process are as follows: First, arc reversal 

is a local operation that affects only the potentials associated with the two variables 

defining the arc. The potentials associated with the other variables remain unchanged. 

 Second, notice that ξ⊗ψ = ξ′⊗ψ′. Thus, the joint conditional distributions of  

{X, Y} given r∪s∪t remain unchanged by arc reversal. Also, since the other 

potentials for r∪s∪t do not change, the joint distribution of all variables in a Bayesian 

network remains unchanged. 

 Third, for any potential α, let dom(α) denote the domain of α. Notice that the 

dom(ξ′) = dom(ξ)∪dom(ψ) = r∪s∪t∪{X}∪{Y}, and the dom(ψ′) = 

dom(ξ)∪dom(ψ)\{X} = r∪s∪t∪{Y}. Thus after arc reversal, X and Y inherit each 

other’s parents, Y loses X as a parent, and X gains Y as a parent. 

 Fourth, suppose we reverse the arc (Y, X) in the revised Bayesian network. Let ξ′′ 

and ψ′′ denote the potentials associated with X and Y after reversal of arc (Y, X). Then  

ξ′′ = (ξ′⊗ψ′)−Y = (((ξ⊗ψ)%(ξ⊗ψ)−X)⊗(ξ⊗ψ)−X)−Y = (ξ⊗ψ)−Y = ξ⊗(ψ−Y) = ξ⊗ιpa(Y), 

and 
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ψ′′ = (ξ′⊗ψ′)%(ξ′⊗ψ′)−Y = (ξ⊗ψ)%(ξ⊗ιpa(Y)) = ψ⊗ι{X}∪pa(X). 

If we ignore the identity potentials (since these have no effect on the joint 

distribution), ξ′′ and ψ′′ are the same as ξ and ψ, what we started with. 

2.2.2.1 Discrete to Discrete 

In this section we describe reversal of an arc between two discrete nodes. This is the 

standard case and we discuss it here only for completeness. 

 Consider the BN given on the left-hand side of Figure 2.5. Let δ and ε denote the 

discrete potentials associated with variables D and E, respectively, before arc 

reversal, and δ′ and ε′ after arc reversal. Then, for all ej ∈ ΩE, and di ∈ ΩD, 

δ(a, b, di) = P(di|a, b), 

ε(b, c, di, ej) = P(ej|b, c, di), 

ε′(a, b, c, ej) = (δ⊗ε)−D(a, b, c, ej) = Σ{P(di|a, b) P(ej|b, c, di) | di ∈ ΩD}, and 

δ′(a, b, c, di, ej) = ((δ⊗ε)%(δ⊗ε)−D)(a, b, c, di, ej) 

= P(di|a, b) P(ej|b, c, di) / Σ{P(di|a, b) P(ej|b, c, di) | di ∈ ΩD}. 

The resulting BN is given on the right-hand side of Figure 2.5. 
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E

A

B

C

P(di|a, b)

P(ej|b, c, di)

D

E

A

B

C

P(di|a, b) P(ej|b, c, di)
Σ{P(di|a, b) P(ej|b, c, di)|di ∈ ΩD}

Σ{P(di|a, b) P(ej|b, c, di)|di ∈ ΩD}

D

E

A

B

C

P(di|a, b)

P(ej|b, c, di)

D

E

A

B

C

P(di|a, b)

P(ej|b, c, di)

D

E

A

B

C

P(di|a, b) P(ej|b, c, di)
Σ{P(di|a, b) P(ej|b, c, di)|di ∈ ΩD}

Σ{P(di|a, b) P(ej|b, c, di)|di ∈ ΩD}

D

E

A

B

C

P(di|a, b) P(ej|b, c, di)
Σ{P(di|a, b) P(ej|b, c, di)|di ∈ ΩD}

Σ{P(di|a, b) P(ej|b, c, di)|di ∈ ΩD}
 

Figure 2.5. Arc reversal between two discrete nodes. 
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2.2.2.2 Continuous to Continuous 

In this section, we describe arc reversals between two continuous variables. Consider 

the BN given on the left-hand side of Figure 2.6. In this BN, X has conditional PDF 

f(u, v, x) and Y has conditional PDF g(v, w, x, y). Let ξ and ψ denote the continuous 

potentials at X and Y, respectively, before arc reversal, and ξ′ and ψ′ after arc 

reversal. Then, 

ξ(u, v, x) = f(u, v, x), 

ψ(v, w, x, y) = g(v, w, x, y), 

ψ′(u, v, w, y) = (ξ⊗ψ)−X(u, v, w, y) = ∫ f(u, v, x) g(v, w, x, y) dx, 

ξ′(u, v, w, x, y) = ((ξ⊗ψ)%(ξ⊗ψ)−X)(u, v, w, x, y) 

= f(u, v, x) g(v, w, x, y) / (∫ f(u, v, x) g(v, w, x, y) dx). 

The resulting BN is shown on the right-hand side of Figure 2.6. 

Y

XU

W

V

f(u, v, x)

g(v, w, x, y) ∫ f(u, v, x) g(v, w, x, y) dxY

XU

W

V

f(u, v, x) g(v, w, x, y)
∫ f(u, v, x) g(v, w, x, y) dx

Y

XU

W

V

f(u, v, x)

g(v, w, x, y) ∫ f(u, v, x) g(v, w, x, y) dxY

XU

W

V

f(u, v, x) g(v, w, x, y)
∫ f(u, v, x) g(v, w, x, y) dx

f(u, v, x) g(v, w, x, y)
∫ f(u, v, x) g(v, w, x, y) dx

 
Figure 2.6. Arc reversal between two continuous nodes. 

2.2.2.3 Continuous to Deterministic 

As we have already discussed, the arc reversal between a continuous and a 

deterministic variable is slightly different from the arc reversal between two 

continuous variables since their joint probability density function does not exist. The 
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conditional associated with the continuous variable has units of density, and the 

conditional associated with the deterministic variable has units of mass. After arc 

reversal, we transfer the density from the continuous node to the deterministic node, 

which results in the deterministic node being continuous and the continuous node 

being deterministic. 

 Consider the situation shown in Figure 2.7. In this BN, X has continuous parents 

U and V, and Y has continuous parents V and W in addition to X. The density at X is f 

and the equation at Y is [Y = h(V, W, X)]. We assume h is invertible in X and 

differentiable on ΩX. The potentials before and after arc reversals are as follows. 

ξ(u, v, x) = f(u, v, x), 

ψ(v, w, x, y) = [Y = h(V, W, X)](v, w, x, y), 

ψ′(u, v, w, y) = (ξ⊗ψ)−X(u, v, w, y) = ∫ f(u, v, x) [Y = h(V, W, X)](v, w, x, y) dx 

= |(∂/∂y)(h−1(v, w, y))| f(u, v, h−1(v, w, y)), and 

ξ′(u, v, w, x, y) = ((ξ⊗ψ)%(ξ⊗ψ)−X)(u, v, w, x, y) = ψ(v, w, x, y)  

= [Y = h(V, W, X)](v, w, x, y) = [X = h−1(V, W, Y)](v, w, x, y). 

 After we reverse the arc (X, Y), both X and Y inherit each other’s parents, but X 

loses U as a parent. Also, Y has a density function and X has a deterministic 

conditional distribution. The resulting BN is given on right-hand side of Figure 2.7. 

Some of the qualitative conclusions here, namely X loses U as a parent, Y has a 

density function, and X has a deterministic conditional distribution, are based on the 

assumption that U, V, W are continuous. If any of these are discrete, the conclusion 

can change as we will demonstrate in Section 2.2.3. 
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|(∂/∂y)(h–1(v, w, y))| f(u, v, h−1(v, w, y))
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Y
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f(u, v, x)

[Y = h(V, W, X)]

X

Y

U

V

W

f(u, v, x)

[Y = h(V, W, X)]

 
Figure 2.7. Arc reversal between a continuous and a deterministic variable. 

 As an example of the general case, consider the Bayesian network consisting of 

two continuous variables and a deterministic variable whose function is the sum of its 

two parents as shown in Figure 2.8. X ~ f(x), Y|x ~ g(x, y), and Z = X + Y. Let ξ, ψ, ζ 

denote the potentials associated with X, Y, and Z, respectively, before arc reversal, 

and ψ′ and ζ′ denote the revised potentials associated with Y and Z, respectively, after 

reversal of arc (Y, Z). Then, 

ξ(x) = f(x), 

ψ(x, y) = g(x, y), 

ζ(x, y, z) = [Z = X + Y](x, y, z), 

ζ′(x, z) = (ψ⊗ζ)−Y(x, z) = ∫ g(x, y) [Z = X + Y](x, y, z) dy = g(x, z − x), and 

ψ′(x, y, z) = ((ψ⊗ζ)%(ψ⊗ζ)−Y)(x, y, z) = ζ(x, y, z) = [Z = X + Y](x, y, z)  

= [Y = Z − X](x, y, z). 

If we reverse the arc (X, Z) in the revised Bayesian network, we obtain the marginal 

distribution of Z,  

ζ′′(z) = (ξ⊗ζ′)−X(z) = ∫ f(x) g(x, z − x) dx, 

which is the convolution formula for Z. The revised potential at X,  
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ξ′(x, z) = ((ξ⊗ζ′)%(ξ⊗ζ′)−X)(x, z) = f(x) g(x, z − x)/(∫ f(x) g(x, z − x) dx),  

represents the conditional distribution of X given z. 

Y

Z

g(x, y)

X

f(x)

[Z = X + Y]

[Y = Z – X]

X

f(x)

g(x, z–x)

Z

Y

[Y = Z – X]

X

f(x) g(x, z–x)
∫ f(x) g(x, z–x)dx

∫ f(x) g(x, z–x) dx

Z

YY

ZZ

g(x, y)

X

f(x)

[Z = X + Y]

[Y = Z – X]

X

f(x)

g(x, z–x)

Z

Y

[Y = Z – X]

X

f(x) g(x, z–x)
∫ f(x) g(x, z–x)dx

∫ f(x) g(x, z–x) dx

Z

YY

 
Figure 2.8. A continuous Bayesian network with a deterministic variable. 

 We have assumed that the function describing the deterministic variable is 

invertible and differentiable. Let us consider the case where the function is not 

invertible, but it is “piecewise invertible,” i.e., invertible in some known deterministic 

regions of ΩX. For example, consider a Bayesian network with two continuous 

variables X and Y, where X has PDF f(x) and Y is a deterministic function of X 

described by the function Y = X2 as shown in Figure 2.9. 

X

Y

f(x)

[Y = X2]

X

Y (1 / (2       ))(f(− ) + f(      ))y y y

(no closed form expression
for distribution of X|y)X

Y

f(x)

[Y = X2]

X

Y (1 / (2       ))(f(− ) + f(      ))y y y(1 / (2       ))(f(− ) + f(      ))y y y

(no closed form expression
for distribution of X|y)

 
Figure 2.9. A continuous Bayesian network with a piecewise invertible deterministic 

variable. 

 This function is not invertible, but is piecewise invertible since it is invertible in 

the regions (−∞, 0] and (0, ∞). Thus, the deterministic function can be written as 
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follows: [Y = X2](x, y) = [Y = X2, X ≤ 0](x, y) + [Y = X2, X > 0](x, y). Here, [Y = 

X2, X ≤ 0] and [Y = X2, X > 0] are indicator functions in the usual sense, i.e., 

[Y = X2, X ≤ 0](x, y) = 1 if y = x2 and x ≤ 0, and = 0 otherwise. In this case, we can 

compute the marginal for Y in closed form, but not the conditional for X given Y. 

Suppose ξ and ψ denote the continuous potentials at X and Y, respectively, before arc 

reversal, and ξ′ and ψ′ after arc reversal. Then 

ξ(x) = f(x), 

ψ(x, y) = [Y = X2](x, y), 

ψ′(y) = (ξ⊗ψ)
−X

(y) = ∫ f(x) [Y = X2](x, y) dx  

= ∫ f(x) [Y = X2](x, y) ([X ≤ 0](x) + [X > 0](x)) dx  

= ∫ f(x) [Y = X2, X ≤ 0](x, y) dx + ∫ f(x) [Y = X2, X > 0](x, y) dx 

= (1/(2 y )) f(− y ) [X ≤ 0](− y ) + (1/(2 y )) f( y ) [X > 0]( y ) 

= (1/(2 y )) (f(− y ) + f( y )), for all y > 0. 

Since the deterministic function is not invertible, there is no closed form expression 

for ξ′ = (ξ⊗ψ)%(ξ⊗ψ)−X. 

 If a deterministic variable has a function that is neither invertible nor piecewise 

invertible, then we cannot even describe the potential associated with Y in closed 

form. One example of such a function is Z = Max{X, Y}. In this case, if we wish to 

compute the marginal of Z, we can approximate this function, e.g., with a mixture of 

Gaussians [Shenoy 2006]. This will be illustrated in Section 2.3.2.  
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2.2.2.4 Deterministic to Continuous 

In this subsection, we describe arc reversal between a deterministic and a continuous 

variable. Consider a BN as shown on the left-hand side of Figure 2.10. X is a 

deterministic variable associated with a function, [X = h(U, V)], and Y is a continuous 

variable and the conditional distribution of Y|(v, w, x) is distributed as g(v, w, x, y). 

Suppose we wish to reverse the arc (X, Y). Since there is no density potential at X, 

Shenoy [2006] suggests to first reverse arc (U, X) or (V, X) (resulting in a density 

potential at X), and then to reverse arc (X, Y) using the rules for arc reversal between 

two continuous nodes. However, here we show that it is possible to reverse an arc 

between a deterministic node and a continuous node directly without having to 

reverse other arcs. 

U X

Y

[X = h(U, V)] 

g(v, w, x, y)

V

W

U X

Y

[X = h(U, V)] 

g(v, w, h(u, v), y)

V

W

U X

Y

[X = h(U, V)] 

g(v, w, x, y)

V

W

U X

Y

[X = h(U, V)] 

g(v, w, x, y)

V

W

U X

Y

[X = h(U, V)] 

g(v, w, h(u, v), y)

V

W

U X

Y

[X = h(U, V)] 

g(v, w, h(u, v), y)

V

W

 
Figure 2.10. Arc reversal between a deterministic and a continuous node. 

 Consider again the BN given on left-hand side of Figure 2.10. Suppose we wish to 

reverse the arc (X, Y). Let ξ and ψ denote the continuous potentials at X and Y, 

respectively, before arc reversal, and ξ′ and ψ′ after arc reversal. Then, 

ξ(u, v, x) = [X = h(U, V)](u, v, x), 

ψ(v, w, x, y) = g(v, w, x, y), 
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ψ′(u, v, w, y) = ((ξ⊗ψ)−X)(u, v, w, y) = ∫ [X = h(U, V)](u, v, x) g(v, w, x, y) dx 

= g(v, w, h(u, v), y), and 

ξ′(u, v, w, x, y) = (ξ⊗ψ)%((ξ⊗ψ)−X)(u, v, w, x, y) = ξ(u, v, x)  

= [X = h(U, V)](u, v, x). 

 Notice that, that ξ′ does not depend on either W or Y. Thus, after arc reversal, 

there is no arc from Y to X, i.e., the arc being reversed disappears, and X does not 

inherit an arc from W. The resulting BN is shown on the right-hand side of Figure 

2.10. 

2.2.2.5 Deterministic to Deterministic 

In this subsection, we describe arc reversal between two deterministic variables. 

Consider the BN on the left-hand side of Figure 2.11. X is a deterministic function of 

its parents {U, V}, and Y is also a deterministic function of its parents {X, V, W}. 

Suppose we wish to reverse the arc (X, Y). Let ξ and ψ denote the potentials 

associated with X and Y, respectively, before arc reversal, and ξ′ and ψ′ after arc 

reversal. Then 

U X

YW

V

[X = h(U, V)]

[Y = g(V, W, X)]

U X

YW [Y = g(V, W, h(U, V))]

V

[X = h(U, V)]U X

YW

V

[X = h(U, V)]

[Y = g(V, W, X)]

U X

YW

V

[X = h(U, V)]

[Y = g(V, W, X)]

U X

YW [Y = g(V, W, h(U, V))]

V

[X = h(U, V)]U X

YW [Y = g(V, W, h(U, V))]

V

[X = h(U, V)]

 
Figure 2.11. Arc reversal between two deterministic nodes. 

 ξ(u, v, x) = [X = h(U, V)](u, v, x), 
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 ψ(v, w, x, y) = [Y = g(V, W, X)](v, w, x, y), 

 ψ′(u, v, w, y) = (ξ⊗ψ)−X(u, v, w, y)  

= ∫ [X = h(U, V)](u, v, x) [Y = g(V, W, X)](v, w, x, y) dx 

= [Y = g(V, W, h(U, V))](u, v, w, y), and 

ξ′(u, v, w, x, y) = ((ξ⊗ψ)%(ξ⊗ψ)−X)(u, v, w, x, y) 

= [X = h(U, V)](u, v, x) [Y = g(V, W, X)](v, w, x, y) / [Y = g(V, W, h(U, V))]

(u, v, w, y) = [X = h(U, V)](u, v, x). 

 Notice that ξ′ does not depend on either Y nor W. The arc being reversed 

disappears, and X does not inherit a parent of Y. 

2.2.2.6 Continuous to Discrete 

In this section, we will describe arc reversal between a continuous and a discrete 

node. Consider the Bayesian network as shown in Figure 2.12. X is a continuous node 

with conditional PDF f(u, v, x), and D is a discrete node with conditional masses  

P(di|v, w, x) for each di ∈ ΩD. Let ξ and δ denote the density and discrete potentials 

associated with X and D, respectively, before arc reversal, and ξ′ and δ′ after arc 

reversal. Then 

 ξ(u, v, x) = f(u, v, x), 

 δ(v, w, x, di) = P(di|v, w, x), 

 δ′(u, v, w, di) = (ξ⊗δ)−X(u, v, w, di) = ∫ f(u, v, x) P(di|v, w, x) dx, and 

 ξ′(u, v, w, x, di) = ((ξ⊗δ)%(ξ⊗δ)−X)(u, v, w, x, y) 

= f(u, v, x) P(di|v, w, x) / (∫ f(u, v, x) P(di|v, w, x) dx). 
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The BN on the RHS of Figure 2.12 depicts the results after arc reversal. 

X

D P(di|v, w, x)

V

U

W

X

D

V

U

W

f(u, v, x)

∫ f(u, v, x) P(di|v, w, x) dx

f(u, v, x) P(di|v, w, x)
∫ f(u, v, x) P(di|v, w, x) dxX

D P(di|v, w, x)

V

U

W

X

D

V

U

W

f(u, v, x)

∫ f(u, v, x) P(di|v, w, x) dx

f(u, v, x) P(di|v, w, x)
∫ f(u, v, x) P(di|v, w, x) dx

f(u, v, x) P(di|v, w, x)
∫ f(u, v, x) P(di|v, w, x) dx

 
Figure 2.12. Arc reversal between a continuous and a discrete node. 

 For a concrete example, consider the simpler hybrid BN shown on the LHS of 

Figure 2.13. X is a continuous variable, distributed as N(0, 1). D is a discrete variable 

with two states {d1, d2}. The conditional probability mass functions of D are as 

follows: P(d1|x) = 1/(1 + e−2x) and P(d2|x) = e−2x/(1 + e−2x). Let δ and ξ denote the 

potentials associated with D and X, respectively, before arc reversal, and δ′ and ξ′ 

after arc reversal. Then, 

δ(d1, x) = 1/(1 + e−2x), δ(d2, x) = e−2x/(1 + e−2x), 

ξ(x) = ϕ0, 1(x), 

δ′(d1) = (δ⊗ξ)−X(d1) = ∫ (1/(1 + e−2x)) ϕ0, 1(x) dx = 0.5, 

δ′(d2) = (δ⊗ξ)−X(d2) = ∫ (e−2x/(1 + e−2x) ϕ0, 1(x)dx = 0.5, 

ξ′(d1, x) = ((δ⊗ξ)%(δ⊗ξ)−X)(d1, x) = (1/(1 + e−2x)) ϕ0, 1(x))/0.5  

= (2/(1 + e−2x)) ϕ0, 1(x), 

ξ′(d2, x) = (δ⊗ξ)%(δ⊗ξ)−X(d2, x) = (e−2x/(1 + e−2x)) ϕ0, 1(x))/0.5  

= (2e−2x/(1 + e−2x)) ϕ0, 1(x), 



www.manaraa.com

 
 

40

The resulting BN after the arc reversal is given on the RHS of Figure 2.13. 

X

D

X ~ N(0, 1)

P(d1|x) = 1/(1 + e−2x)

P(d2|x) = e−2x/(1 + e−2x)

X

D

X|d1 ~ (2/(1 + e−2x)) N(0, 1))

X|d2 ~ (2e−2x/(1 + e−2x)) N(0, 1))

P(d1) = 0.5

P(d2) = 0.5

X

D

X ~ N(0, 1)

P(d1|x) = 1/(1 + e−2x)

P(d2|x) = e−2x/(1 + e−2x)

X

D

X ~ N(0, 1)

P(d1|x) = 1/(1 + e−2x)

P(d2|x) = e−2x/(1 + e−2x)

X

D

X|d1 ~ (2/(1 + e−2x)) N(0, 1))

X|d2 ~ (2e−2x/(1 + e−2x)) N(0, 1))

P(d1) = 0.5

P(d2) = 0.5

X

D

X|d1 ~ (2/(1 + e−2x)) N(0, 1))

X|d2 ~ (2e−2x/(1 + e−2x)) N(0, 1))

P(d1) = 0.5

P(d2) = 0.5  
Figure 2.13. Arc reversal between a continuous and a discrete node. 

2.2.2.7 Deterministic to Discrete 

In this subsection, we describe reversal of an arc between a deterministic and a 

discrete variable. Consider the hybrid BN shown on the left-hand side of Figure 2.14. 

Let ξ and δ denote the potentials at X and D, respectively, before arc reversal, and let 

ξ′ and δ′ denote the potentials after arc reversal. Then, 

ξ(u, v, x) = [X = h(U, V)](u, v, x), 

δ(v, w, x, di) = P(di|v, w, x), 

δ′(u, v, w, di) = ∫ [X = h(U, V)](u, v, x) P(di|v, w, x) dx = P(di|v, w, h(u, v)), and 

ξ′(u, v, w, x, y) = [X = h(U, V)](u, v, x) P(di|v, w, x)/P(di|v, w, h(u, v)) 

= [X = h(U, V)](u, v, x). 

W

X [X = h(U, V)]

P(di|v, w, x)

U

V

D W

X [X = h(U, V)]

P(di|v, w, h(u, v))

U

V

DW

X [X = h(U, V)]

P(di|v, w, x)

U

V

DW

X [X = h(U, V)]

P(di|v, w, x)

U

V

D W

X [X = h(U, V)]

P(di|v, w, h(u, v))

U

V

DW

X [X = h(U, V)]

P(di|v, w, h(u, v))

U

V

D
 

Figure 2.14. Arc reversal between a deterministic and a discrete variable. 
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Notice that ξ′ depends on neither D nor W. The illustration of an arc reversal between 

a deterministic and discrete node with parents is given in Figure 2.14 above. 

2.2.2.8 Discrete to Continuous 

In this subsection, we describe reversal of an arc from a discrete to a continuous 

variable. Consider the hybrid BN shown on the LHS of Figure 2.15. Let δ and ξ 

denote the potentials associated with D and X, respectively, before arc reversal, and δ′ 

and ξ′ after arc reversal. Then, 

δ(u, v, di) = P(di|u, v), 

ξ(v, w, x, di) = f(v, w, x, di), 

ξ′(u, v, w, x) = (δ⊗ξ)−D(u, v, w, x) = Σ{P(di|u, v) f(v, w, x, di) | di ∈ ΩD}, 

δ′(u, v, w, x, di) = ((δ⊗ξ)%(δ⊗ξ)−D)(u, v, w, x, di) 

= P(di|u, v) f(v, w, x, di)/Σ{P(di|u, v) f(v, w, x, di) | di ∈ ΩD}. 

The density at X after arc reversal is a mixture density. 

D

X f(v, w, x, di)W

U

V

P(di|u, v)

XW

U

V

D

Σ{P(di|u, v) f(v, w, x, di) | di ∈ ΩD}

P(di|u, v) f(v, w, x, di)
Σ{P(di|u, v) f(v, w, x, di) | di ∈ ΩD}D

X f(v, w, x, di)W

U

V

P(di|u, v)

XW

U

V

D

Σ{P(di|u, v) f(v, w, x, di) | di ∈ ΩD}

P(di|u, v) f(v, w, x, di)
Σ{P(di|u, v) f(v, w, x, di) | di ∈ ΩD}

P(di|u, v) f(v, w, x, di)
Σ{P(di|u, v) f(v, w, x, di) | di ∈ ΩD}

 
Figure 2.15. Arc reversal between a discrete and a continuous variable. 

 For a concrete example, consider the BN given on the LHS of Figure 2.16. The 

discrete variable D has two states {d1, d2} with P(d1) = 0.5 and P(d2) = 0.5. X is a 

continuous variable whose conditional distributions are X|d1 ~ N(0, 1) and  
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X|d2 ~ N(2, 1). Let δ and ξ denote the potentials associated with X and D, 

respectively, before arc reversal, and δ′ and ξ′ after arc reversal. Then, 

δ(d1) = 0.5, δ(d2) = 0.5, 

ξ(d1, x) = ϕ0, 1(x), ξ(d2, x) = ϕ2, 1(x), 

ξ′(x) = (δ⊗ξ)−D(x) = 0.5 ϕ0, 1(x) + 0.5 ϕ2, 1(x), 

δ′(d1, x) = ((δ⊗ξ)%(δ⊗ξ)−D)(d1, x) = (0.5 ϕ0, 1(x))/(0.5 ϕ0, 1(x) + 0.5 ϕ2, 1(x)), 

δ′(d2, x) = ((δ⊗ξ)%(δ⊗ξ)−D)(d
2
, x) = (0.5 ϕ2, 1(x))/(0.5 ϕ0, 1(x) + 0.5 ϕ2, 1(x)), 

The resulting BN after the arc reversal is given on the RHS of Figure 2.16.  

D

X

P(d1) = 0.5

P(d2) = 0.5

X|d1 ~ ϕ0,1(x)

X|d2 ~ ϕ2,1(x)

D

X X ~ 0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d1|x) = 0.5 ϕ0,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d2|x) = 0.5 ϕ2,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

D

X

P(d1) = 0.5

P(d2) = 0.5

X|d1 ~ ϕ0,1(x)

X|d2 ~ ϕ2,1(x)

D

X

P(d1) = 0.5

P(d2) = 0.5

X|d1 ~ ϕ0,1(x)

X|d2 ~ ϕ2,1(x)

D

X X ~ 0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d1|x) = 0.5 ϕ0,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d2|x) = 0.5 ϕ2,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

D

X X ~ 0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d1|x) = 0.5 ϕ0,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d2|x) = 0.5 ϕ2,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d1|x) = 0.5 ϕ0,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d1|x) = 0.5 ϕ0,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

0.5 ϕ0,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d2|x) = 0.5 ϕ2,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

P(d2|x) = 0.5 ϕ2,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

0.5 ϕ2,1(x)
0.5 ϕ0,1(x) + 0.5 ϕ2,1(x)

 
Figure 2.16. An example of an arc reversal between a discrete and a continuous 

variable. 

2.2.2.9 Discrete to Deterministic 

In this subsection, we describe reversal of an arc between a discrete and a 

deterministic variable. Consider the hybrid BN as shown on the left-hand side of 

Figure 2.17. Suppose that ΩD = {d1, …, dk}. Let δ and ξ denote the potentials 

associated with D and X, respectively, before arc reversal, and δ′ and ξ′ after arc 

reversal. Then, 
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D

X

U

V

W [X = hi(V,W)]

P(di|u, v) D

X

U

V

W Σ{P(di|u, v) [X = hi(V,W)](u, v, x)|i = 1, ..., k}

P(di|u, v) [X = hi(V,W)](u, v, x)
Σ{P(di|u, v) [X = hi(V,W)](u, v, x)|i = 1, ..., k}D

X

U

V

W [X = hi(V,W)]

P(di|u, v)D

X

U

V

W [X = hi(V,W)]

P(di|u, v) D

X

U

V

W Σ{P(di|u, v) [X = hi(V,W)](u, v, x)|i = 1, ..., k}

P(di|u, v) [X = hi(V,W)](u, v, x)
Σ{P(di|u, v) [X = hi(V,W)](u, v, x)|i = 1, ..., k}D

X

U

V

W Σ{P(di|u, v) [X = hi(V,W)](u, v, x)|i = 1, ..., k}

P(di|u, v) [X = hi(V,W)](u, v, x)
Σ{P(di|u, v) [X = hi(V,W)](u, v, x)|i = 1, ..., k}

P(di|u, v) [X = hi(V,W)](u, v, x)
Σ{P(di|u, v) [X = hi(V,W)](u, v, x)|i = 1, ..., k}

 
Figure 2.17. Arc reversal between a discrete and a deterministic variable. 

δ(u, v, di) = P(di|u, v), 

ξ(v, w, x, di,) = [X = hi(V, W)](v, w, x), 

ξ′(u, v, w, x) = (δ⊗ξ)−D(u, v, w, x) = Σ{P(di|u, v) [X = hi(V, W)](v, w, x) | i = 1, …, 

k}, 

δ′(u, v, w, x, di) = 

P(di|u, v) [X = hi(V, W)](v, w, x)/Σ{P(di|u, v) [X = hi(V, W)](v, w, x) | i = 1, 

…, k}. 

The situation after arc reversal is shown on the right-hand side of Figure 2.17. Notice 

that after arc reversal, X has a weighted set of equation functions. Since the values of 

ξ′ are in units of probability mass, X remains deterministic after arc reversal. 

 For a concrete example, consider the simpler hybrid BN shown on the LHS of 

Figure 2.18. V has the uniform distribution on (0, 1). D has two states {d1, d2} with 

P(d1|v) = [0 < V ≤ 0.5](v), and P(d2|v) = [0.5 < V < 1](v). Here, [0 < V ≤ 0.5] and  

[0.5 < V < 1] are indicator functions in the usual sense. X is deterministic with 

equation functions [X = V] if D = d1, and [X = −V] if D = d2. After arc reversal, the 

conditional distributions at D and X are as shown in the RHS of Figure 2.18 (these are 
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special cases of the general formulae given in Figure 2.17). Let ϖ denote the 

continuous potential at V. Then ϖ(v) = [0 < V < 1](v). We can find the marginal of X 

from the BN on the RHS of Figure 2.18 by reversing arc (V, X) as follows. 

 (ϖ⊗ξ′)−V(x) = ∫ [0 < V < 1](v) [0 < V ≤ 0.5](v) [X = V](x, v) dv + 

∫ [0 < V < 1](v) [0.5 < V < 1](v) [X = −V](x, v) dv 

= [0 < X ≤ 0.5](x) + [−1 < X < −0.5](x). 

Thus, the marginal distribution of X is uniform on the interval (−1, −0.5)∪(0, 0.5). 

D

X

V

X|(v, d1) = v
X|(v, d2) = –v

P(d1|v) = [0 < V ≤ 0.5](v)
P(d2|v) = [0.5 < V < 1](v)

D

X

V

[0 < V ≤ 0.5](v) [X = V](v, x) + [0.5 < V < 1](v) [X = –V](v, x)

[0 < V ≤ 0.5](v) [X = V](v, x)
P(d1|v) [X = V](v, x) + P(d2|v) [X = –V](v, x)

[0.5 < V < 1](v) [X = –V](v, x)
P(d1|v) [X = V](v, x) + P(d2|v) [X = –V](v, x)

P(d1|v, x) = 

P(d2|v, x) = V ~ U(0, 1) V ~ U(0, 1)
D

X

V

X|(v, d1) = v
X|(v, d2) = –v

P(d1|v) = [0 < V ≤ 0.5](v)
P(d2|v) = [0.5 < V < 1](v)

D

X

V

[0 < V ≤ 0.5](v) [X = V](v, x) + [0.5 < V < 1](v) [X = –V](v, x)

[0 < V ≤ 0.5](v) [X = V](v, x)
P(d1|v) [X = V](v, x) + P(d2|v) [X = –V](v, x)

[0.5 < V < 1](v) [X = –V](v, x)
P(d1|v) [X = V](v, x) + P(d2|v) [X = –V](v, x)

P(d1|v, x) = 

P(d2|v, x) = 

[0 < V ≤ 0.5](v) [X = V](v, x)
P(d1|v) [X = V](v, x) + P(d2|v) [X = –V](v, x)

[0 < V ≤ 0.5](v) [X = V](v, x)
P(d1|v) [X = V](v, x) + P(d2|v) [X = –V](v, x)

[0.5 < V < 1](v) [X = –V](v, x)
P(d1|v) [X = V](v, x) + P(d2|v) [X = –V](v, x)

[0.5 < V < 1](v) [X = –V](v, x)
P(d1|v) [X = V](v, x) + P(d2|v) [X = –V](v, x)

P(d1|v, x) = 

P(d2|v, x) = V ~ U(0, 1) V ~ U(0, 1)

 
Figure 2.18. A special case of arc reversal between a discrete and deterministic 

variable. 

2.2.3 Partially Deterministic Variables 

In this section, we describe a new kind of distribution called partially deterministic. 

Partially deterministic distributions arise in the process of arc reversals in hybrid 

Bayesian networks. 

 The conditional distributions associated with a deterministic variable have values 

in units of probability mass. If some of the distributions have values in units of 

probability mass and some in units of probability density, we say that the distribution 

is partially deterministic. We get such distributions during the process of the arc 
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reversals between a continuous node and a deterministic node with discrete and 

continuous parents. Consider the Bayesian network shown on the left-hand side of 

Figure 2.19. Let ξ and ζ denote the continuous potentials at X and Z, respectively, 

before arc reversal, and ξ′ and ζ′ after arc reversal. Then,  

ξ(x) = f(x), 

ζ(x, y, z, d1) = [Z = X](x, z) (m),  

ζ(x, y, z, d2) = [Z = Y](y, z) (m), 

ζ′(y, z, d1) = (ξ⊗ζ)−X(y, z, d1) = ∫ f(x) [Z = X](x, z) dx = f(z), 

ζ′(y, z, d2) = (ξ⊗ζ)−X(y, z, d2) = [Z = Y](y, z) ∫ f(x) dx = [Z = Y](y, z), 

ξ′(x, y, z, d1) = (ξ⊗ζ)%(ξ⊗ζ)−X(x, y, z, d1) = [Z = X](x, z) , 

ξ′(x, y, z, d2) = (ξ⊗ζ)%(ξ⊗ζ)−X(x, y, z, d2) = f(x) [Z = Y](y, z)/[Z = Y](y, z)  

= f(x) . 

Thus, both X and Z have partially deterministic distributions. 

X

Y Z

DX ~ f(x) ΩD = {d1, d2}

Z|(x, y, d1) = x
Z|(x, y, d2) = y Y

X

Z

D

Z|(y, d1) ~ f(x)
Z|(y, d2) = y

X|(z, d1) = z
X|(z, d2) ~ f(x)X

Y Z

DX ~ f(x) ΩD = {d1, d2}

Z|(x, y, d1) = x
Z|(x, y, d2) = y Y

X

Z

D

Z|(y, d1) ~ f(x)
Z|(y, d2) = y

X|(z, d1) = z
X|(z, d2) ~ f(x)

Y

X

Z

D

Z|(y, d1) ~ f(x)
Z|(y, d2) = y

X|(z, d1) = z
X|(z, d2) ~ f(x)

 
Figure 2.19. Arc reversal leading to partially deterministic distributions. 
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2.3  Converting non-MoG Bayesian Network to MoG Bayesian 

Network 

Consider the BN shown in Figure 1.2. It is not a MoG Bayesian network since D5 has 

a non-Gaussian distribution, and C23 and F have non-linear conditional Gaussian 

distributions. This section explains how we can approximate a non-Gaussian 

distribution by a MoG distribution, and how we can approximate a max deterministic 

function by a MoG distribution. 

2.3.1 Non-Gaussian Distributions 

In this subsection, we will describe how the exponential distribution E[1] can be 

approximated by a MoG distribution. 

 Let A denote a chance variable that has the exponential distribution with mean 1, 

denoted by E[1], and let fA denote its probability density function (PDF). Thus 

  fA(x) = e–x if 0 ≤ x 

= 0 otherwise 

 In approximating the PDF fA by a mixture of Gaussians, we first need to decide on 

the number of Gaussian components needed for an acceptable approximation. In this 

particular problem, more the components used, better will be the approximation. 

However, more components will lead to a bigger computational load in making 

inferences. We will measure the goodness of an approximation by estimating the 

Kullback-Leibler [1951] divergence measure between the target distribution and the 

corresponding MoG distribution. 
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 Suppose we use five components. Then we will approximate fA by the mixture 

PDF gA = p1 ϕμ1, σ1 +… + p5 ϕμ5, σ5, where ϕμi, σi denote the PDF of a uni-variate 

Gaussian distribution with mean μi and standard deviation σi > 0, p1, …, p5 ≥ 0, and 

p1+…+ p5 = 1. To estimate the mixture PDF, we need to estimate fourteen free 

parameters, e.g., p1, …, p4, μ1, …, μ5, σ1, …, σ5. To find the values of the 14 free 

parameters, we solve a non-linear optimization problem as follows: 

 Find p1, …, p4, μ1, …, μ5, σ1, …, σ5, so as to minimize δ(fA, gA) 

 subject to: p1 ≥ 0, …, p4 ≥ 0, p1+ … +p4 ≤ 1, σ1 ≥ 0, …, σ5 ≥ 0, 

where δ(fA, gA) denotes a distance measure between two PDFs. A commonly used 

distance measure is Kullback-Leibler divergence δKL defined as follows: 

  
δ KL ( fA , gA ) = fA(x)ln

fA(x)
gA(x)

⎛

⎝⎜
⎞

⎠⎟
dx

S
∫  

 In practice, we solve a discrete version of the non-linear optimization problem by 

discretizing both fA and gA using a large number of bins. To discretize gA, we assume 

that the domain of ϕμi, σi extends only from μi – 3σi to μi + 3σi. With probability 

greater than 0.99, the domain of E[1] extends from [0, 4.6]. To match the domain of 

the E[1] distribution, we constrain the values μi – 3σi ≥ 0 and μi + 3σi ≤ 4.6 for i = 1, 

…, 5. Suppose we divide the domain into n equally sized bins. Let fi and gi denote the 

probability masses for the ith bin corresponding to PDFs fA and gA, respectively. Then 

the discrete version of the non-linear programming problem can be stated as follows: 
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Minimize 
  

fi (x)ln
fi (x)
gi (x)

⎛

⎝⎜
⎞

⎠⎟i=1

n
∑  

 subject to:  p1 ≥ 0, …, p4 ≥ 0, p1+ … + p4 ≤ 1,  

σ1 ≥ 0, …, σ5 ≥ 0, 

μ1 – 3σ1 ≥ 0, …, μ5 – 3σ5 ≥ 0, 

 μ1 + 3σ1 ≤ 4.6, …, μ5 + 3σ5 ≤ 4.6 

 One can use the solver in Excel to solve such optimization problems taking care 

to avoid local optimal solutions. An optimal solution computed in Excel with n = 100 

(shown rounded to 3 digits) is shown in Table 2.3. 

Table 2.3: Parameters of the MoG Approximation to the E[1] distribution. 

i pi μi σi 
1 0.051 0.032 0.011 

2 0.135 0.143 0.048 

3 0.261 0.415 0.138 

4 0.341 1.014 0.338 

5 0.212 2.300 0.767 

 

A graph of the two PDFs overlaid over each other is shown in Figure 2.20. 
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Figure 2.20. A 5-component MoG approximation (solid) of the E[1] distribution 

(dashed). 

 To measure the goodness of the approximation, we can compute the Kullback-

Leibler (KL) divergence of the two distributions over the domain [0, 4.6] where both 

densities are positive. The KL divergence is approximately 0.021. We can also 

compare moments. The mean and variance of the E[1] distribution are 1 and 1. The 

mean and variance of the MoG approximation are 0.96 and 0.76. We can also 

compare the cumulative distribution functions (CDF). A graph of the two CDFs 

overlaid over each other is shown in Figure 2.21. 
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Figure 2.21: The CDFs of the E[1] distribution (dashed), and its MoG approximation 

(solid). 

 If we need to get a MoG approximation of the E[λ] distribution, we can derive it 

easily from the MoG approximation of the E[1] distribution. If X ~ E[1], and  

Y = λ X, then Y ~ E[λ]. Thus, to get a MoG approximation of E[25], e.g., the mixture 

weights pi’s don’t change, but we need to multiply each mean μi and σi in Table 2.3 

by 25. 

2.3.2 Maximum of Two Gaussians 

The problem of computing the distribution of the maximum of two (or more) 

Gaussians is of interest in many communities, especially in project management 

[Clark 1961], statistics [Afonja 1972], and in design of semiconductors [Sinha et al. 

2006]. Clark [1961] computes exactly the first four moments of the maximum of two 

correlated Gaussians. To compute the moments of maximum of three or more 

correlated Gaussians, he makes the assumption that the distribution of the maximum 

is Gaussian, which allows a recursive computation. This assumption is grossly 
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violated, especially if the difference of the means is much smaller than the variances 

of the two Gaussians. 

 Here, we will represent the maximum of two Gaussians as a Bayesian network 

and approximate it with a mixture of Gaussians (MoG) Bayesian network. Lauritzen 

and Jensen’s [2001] exact algorithm for computing marginals in MoG Bayesian 

network can then be used to compute the full distribution of the maximum. 

 Consider the Bayesian network shown in Figure 2.22 with three random variables: 

E ~ N(5, 1/16), F ~ N(5, 1), E and F are independent, and  

G = Max{E, F}. Since the deterministic function is not linear, this Bayesian network 

is not a MoG. 

E F

G

E ~ N(5, 1/16) F ~ N(5, 1)

G = Max{E, F}

E F

G

E ~ N(5, 1/16) F ~ N(5, 1)

G = Max{E, F}
 

Figure 2.22: Maximum of two Gaussians Bayesian network 

 For this small BN, we can compute the marginal probability density function of G 

by brute force using order statistics. Let FG denote the cumulative distribution 

function (CDF) of G, ΦF denote the CDF of F, and let ΦE denote the CDF of E. Then, 

FG(g) = ΦE(g)ΦF(g). Therefore, the probability density function of G, fG, is given by 

fG(g) = (d/dg)(FG(g)) = φE(g)ΦF(g) + ΦE(g)φF(g), where φE and φF are the PDFs of E 

and F, respectively. Since there is no closed form expression for the CDF of a normal 

distribution, there is no closed form expression for fG(g). A graph of fG(g) is shown in 
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Figure 2.23. The mean and variance of G are computed (using the exact analytic 

results given by Clark [1961]) as 5.411 and 0.362, respectively. 

  
Figure 2.23: The probability density function of G. 

 Our main strategy is to compute the marginal distribution of G using local 

computation. For that we will convert the BN in Figure 2.22 to a mixture of 

Gaussians (MoG) BN. Then we can use the Lauritzen-Jensen algorithm [2001] for 

MoG BN to compute the marginal distribution of G using local computation. This 

algorithm is implemented in Hugin, a commercially available software package. 

 In approximating a Bayesian Network with MoG BN, we will assume that the 

effective domain of a univariate Gaussian distribution with mean μ and standard 

deviation σ is (μ – 3σ, μ + 3σ). Thus, the effective domain of E is (4.25, 5.75) and the 

effective domain of F is (2, 8). Since G = Max{E, F}, the effective domain of G is 

(4.25, 8). 

 Our first step is to introduce a new discrete random variable S as shown in Figure 

2.24. S has two states s1 and s2, and has E and F as parents. The conditional 
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distributions of S are as follows: P(s1|e, f) = [E ≤ F](e, f) and P(s2|e, f) = [E > F](e, f). 

Thus, S is an indicator random variable which is in state s1 when E ≤ F, and in state s2 

when E > F. We make S a parent of G, and the conditional distributions of G can now 

be expressed as a conditional linear Gaussian as shown in Figure 2.24. Notice that the 

conditional distributions of all continuous variables are conditional linear Gaussians. 

The Bayes net is not a MoG Bayes net since S is a discrete random variable with 

continuous parents E and F. 

E F

S GP(s1|e, f) = 1 if e ≤ f 
G|(e, f, s1) ~ N( f, 0)
G|(e, f, s2) ~ N( e, 0)

E F

S GP(s1|e, f) = 1 if e ≤ f 
G|(e, f, s1) ~ N( f, 0)
G|(e, f, s2) ~ N( e, 0)

 
Figure 2.24: The augmented Bayesian network with discrete random variable S. 

 Our next step is to do a sequence of arc reversals so that the resulting Bayes net is 

an equivalent MoG Bayes net. We need to reverse arcs (E, S) and (F, S) in either 

sequence. Suppose we reverse (E, S) first. 

 Before arc reversal, let ε denote the density potential at E, and let σ denote the 

discrete potential at S. Thus, ε(e) = ϕ5,1/4(e), where ϕ5,1/4(e) denotes the probability 

density function (PDF) of a univariate Gaussian distribution with mean 5, and 

standard deviation ¼, and σ(e, f, s1) = [E ≤ F](e, f), σ(e, f, s2) = [E > F](e, f) 

 After arc reversal the revised potential at S is σ´ = (ε⊗σ)–E, and the revised 

potential at E is ε´ = (ε⊗σ)%(ε⊗σ)–E. The details of these potentials are as follows. 
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σ´(f, s1) = P(s1|f), where P(s1|f) = ∫
∞−

f

ϕ5,1/4 (e)de, σ´(f, s2) = P(s2|f), where P(s2|f) 

= ∫
∞

f

ϕ5,1/4 (e)de , ε´(e, f, s1) = (1/P(s1|f)) ϕ5,1/4(e)[E ≤ F](e, f), ε´(e, f, s2) = (1/P(s2|f)) 

ϕ5,1/4(e)[E >F](e, f) 

ε′ E F

S Gσ′

ε′ E F

S Gσ′
 

Figure 2.25: The Bayes net after reversal of arc (E, S). 

 A graph of P(s1|f) vs. f is shown in Figure 2.26. Notice that since P(s1|f) is the 

cumulative distribution function of E, P(s1|f) ≈ 0 if f < 4.25, ≈ 1 if f > 5.75. Figure 

2.27 shows the conditional PDF of E given s1 and some sample values of f. Notice 

that these are truncated Gaussians. 

 Notice that the conditional probability densities of E (given F and S) are no longer 

conditional linear Gaussians. Later (after we have reversed arc (F, S)), we will 

approximate these conditional distributions by mixtures of Gaussians. 
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Figure 2.26: A graph of P(s1 | f) versus f 

 
Figure 2.27: A graph of fE|(s1,f)(e) vs. e for f = 4.5, 4.75, 5, 5.25, and 6 

 Next, we reverse arc (F, S). Suppose the density potential at F before arc reversal 

is denoted by φ. Then the revised potential at S is σ´´(s1) = 0.5, σ´´(s2) = 0.5, and the 

revised potential at F is φ´(f, s1) = 2P(s1|f)ϕ5,1(f)), φ´(f, s2) = 2P(s2|f)ϕ5,1(f). The 

potential φ´ represents conditional probability densities for F given s1 and s2. A graph 

of these two densities is shown in Figure 2.28. Clearly, these are not conditional 

linear Gaussians. The revised Bayes net is shown in Figure 2.29. 
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Figure 2.28: The conditional probability densities of F given s1 (right) and s2 (left) 

E F

S G

φ′

σ′′

ε′ E F

S G

φ′

σ′′

ε′

 
Figure 2.29: The Bayes net after reversal of arc (F, S) 

 Notice that the Bayes net in Figure 2.29 is almost a MoG BN except for the fact 

that the potentials φ´ and ε´ are not conditional linear Gaussians. We can approximate 

these potentials by mixtures of Gaussian potentials using the optimization technique 

described in Shenoy [2006]. 

 When the non-Gaussian distribution has many continuous variables in its domain, 

the task of finding a mixture of Gaussians approximation can be difficult in practice. 

Notice from Figure 2.27 that the potential for ε´ changes considerably with f. So our 

next step is to introduce a new discrete variable D with {F, S} as its parents and E as 

its child. D has seven states, d1, …, d7. D is an indicator variable for F|si. Given s1, d1 
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≡ –∞ < f ≤ 4.5, d2 ≡ 4.5 < f ≤ 4.75, …, d6 ≡ 5.5 < f ≤ 5.75,  

d7 ≡ 5.75 < f < ∞. Given s2, d1 ≡ 5.5 < f < ∞, d2 ≡ 5.25 < f ≤ 5.5, …,  

d6 ≡ 4.25 < f ≤ 4.5, d7 ≡ –∞< f < 4.25. The new Bayes Net is shown in Figure 2.23. 

The potential ε´ at E changes its domain from {E, F, S} to {E, F, S, D}, but otherwise 

remains unchanged. 

ε′′ E F

S G

Dδ

ε′′ E F

S G

Dδ

 
Figure 2.30: The Bayes net after adding the discrete variable D 

 Notice that D is a discrete variable with continuous parent F. We need to address 

this situation by reversing the arc (F, D). The revised discrete potential at D is  

δ′(d1, s1) = δ′(d1, s2) = 
4.5

12 ( | )P s f
−∞
∫ ϕ5,1(f)df = 0.0014, etc. The revised density 

potential at F is as follows. 

φ´´(f, s1, d1) = (2P(s1|f)/0.0014) ϕ5,1(f))[−∞ < F ≤ 4.5](f), 

φ´´(f, s2, d1) = (2P(s2|f)/0.0014) ϕ5,1(f)) [5.5 < f < ∞], etc.  

The resulting Bayes net after reversing the arc (F, D) is shown in Figure 2.31. 
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E F

S G

φ′′

Dδ′

E F

S G

φ′′

Dδ′

 
Figure 2.31: The Bayes net after reversing arc (F, D) 

 Next we need to approximate the non-CLG potentials φ′′ and ε′′ by CLG 

potentials as described in Shenoy [2006]. In order to approximate φ′′, we use five 

Gaussian components for each region di. Figure 2.32 shows the actual distribution of 

F|(s1, d1) overlaid on a MoG approximation, and Figure 2.33 shows the revised Bayes 

net. The potential χ at discrete variable C has the weights of the MoG approximation, 

and the potential φ′′′ has the parameters of the Gaussian components. 
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Figure 2.32: A MoG approximation of pdf of F|(s1, d1) 
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φ′′′E F

S G

D C χ

φ′′′E F

S G

D C χ

 
Figure 2.33: The Bayes net after approximating the potential φ′′ with MoG 

distributions 

 Finally, we approximate the potential ε′′ by a MoG distribution. The task of 

approximating the conditional distribution of E|(si, f, dj) is much simpler since range 

in which F lies is restricted to a small region. For example E|(s1, f , d7) ~ N(5,1/16), 

and no approximation is needed. For the remaining regions, we use 3 components. 

Figure 2.34 shows a MoG approximation using three Gaussian components for  

f = 4.25, 4.30, …, 4.5 for E|(s1, f, d1) overlaid on the actual distribution. The Gaussian 

components are correlated with F. Figure 2.35 shows the final MoG Bayes net. The 

potential associated with A has the weights of the mixtures, and the potential ε′′′ has 

the parameters of the Gaussian components including the correlations with F. 
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Figure 2.34: A MoG approximation of conditional distribution of E given f, s1, and d1 

ε′′′

E F

S G

D C

Aα

ε′′′

E F

S G

D C

Aα

 
Figure 2.35: The MoG Bayes net after approximating ε′′ with MoG distributions 

 To evaluate the quality of our approximation we entered the above MoG BN in 

Hugin. The mean of the marginal distribution of G is reported as 5.409 and the 

variance is reported as 0.351. Comparing to 5.411 and 0.362 given by the exact 

analytic results, the approximation is very good considering that we used a few 

components for approximating the potentials at F and E. The full distribution of G 

computed in Hugin is shown in Figure 2.36 below. 
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Figure 2.36: The full distribution of G in Hugin 

 

2.4  Summary and Conclusions 

In chapter one the problems involved with the current methods of solving stochastic 

PERT networks were illustrated. In this chapter, we provide a new method which 

aims to approximate the true distribution of the project completion time by 

eliminating the false assumptions for the distribution of the maximum of two 

Gaussians. In this method first a PERT network is transformed into a MoG Bayesian 

network and then the Lauritzen-Jensen algorithm is used to make exact inferences in 

the MoG Bayes net.  

 To transform a PERT network into a MoG Bayesian network the non-Gaussian 

distributions and max deterministic functions should be approximated using MoG 

distributions. These two cases are illustrated in subsections 2.3.1 and 2.3.2 

respectively. In addition, transformation of a PERT Bayes net into a MoG involves 

arc reversals since the restrictive nature of MoG distributions does not allow discrete 

variables to have continuous parents which is in fact is very common for general 
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hybrid Bayesian networks. Also in the process of approximating non-CLG 

distributions with MoG’s we may create discrete variables with continuous parents. 

Besides, arc reversals are also used to solve hybrid influence diagrams, so there is a 

need for arc reversal theory in literature. For that reason, in Section 2.2 we have 

described arc reversals in hybrid Bayesian networks with deterministic variables for 

all possible cases. We also have described a new kind of variable called partially 

deterministic that can arise after arc reversals. The arc reversal theory facilitates the 

task of approximating general Bayesian networks with mixtures of Gaussians 

Bayesian networks. 

 Some disadvantages of our strategy are as follows. Arc reversals make Gaussian 

distributions non-Gaussian. We can approximate non-Gaussian distributions by 

mixtures of Gaussians. However, when the non-Gaussian distribution has many 

continuous variables in its domain, the task of finding a mixture of Gaussians 

approximation by solving an optimization problem can be difficult in practice. 

Additionally, in the process of arc reversals, we increase the domains of the potentials 

and the resulting complexity may make this strategy impractical. Transformation 

process of the PERT Bayes net given in Figure 1.2 into a MoG Bayesian network is 

demonstrated in Appendix A. 

 In Chapter 3 we will explore solving stochastic PERT networks using Mixtures of 

Truncated Exponentials as an alternative to transforming PERT networks into a MoG 

Bayesian network.  
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3 SOLVING STOCHASTIC PERT NETWORKS USING 

MIXTURES OF TRUNCATED EXPONENTIALS 

3.1  Introduction 

In the previous chapters we transformed a PERT network into a Bayesian network, 

which enabled us to model the dependence between the activities. Following that we 

demonstrated the methods to transform a PERT Bayesian network into a MoG 

Bayesian network. Representation of a PERT network as a MoG Bayesian network is 

beneficial in the sense that it allows us to eliminate the false assumption made in the 

literature which assumes that the maximum of two normally distributed independent 

random variables is again normally distributed. Hence, we concluded that by 

transforming PERT networks into MoG Bayesian network a more accurate 

representation of the project completion time is feasible. However, as discussed in the 

previous chapter the transforming process of a PERT network into a MoG Bayesian 

network is cumbersome because of the restricted nature of MoG Bayesian networks. 

The inability of discrete variables to have continuous parents and the enforcement for 

continuous variables to possess conditional linear Gaussian distributions makes the 

process of transforming a PERT network to a MoG Bayes net too complex for 

practical use. 

 An alternative to solve stochastic PERT networks with mixtures of Gaussians is to 

solve them using mixtures of truncated exponentials. Mixtures of truncated 

exponentials (MTE) are an alternative to discretization and Monte Carlo methods for 
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solving hybrid Bayesian networks. MTE potentials can be used for inference in 

hybrid Bayesian networks that do not fit the restrictive assumptions of the conditional 

linear Gaussian (CLG) model, such as networks containing discrete nodes with 

continuous parents. The following section provides detailed information about 

mixtures of truncated exponentials. 

3.2  Mixtures of Truncated Exponentials 

A mixture of truncated exponential (MTE) [Moral et al. , 2001; Rumi, 2003] has the 

following definition. 

 Let X be a mixed n-dimensional random variable. Let Y = (Y1, …, Yd) and  

Z = (Z1,…, Zc) be the discrete and continuous parts of X, respectively, with c + d = n. 

A function φ: ΩX Ra + is an MTE potential if one of the next two conditions holds: 

The potential φ can be written as  

 φ(x) = φ(y, z) = a0
y + 

1 1
exp( )

m c
y y
i j j

i j
a b z

= =
∑ ∑   (3.1) 

where ay
0, ay

i and by
j are real numbers for all i = 1,…,m, j = 1,…, c, y ∈ ΩY and  

z ∈ ΩZ.  

 There is a partition Ω1, …, Ωk  of ΩX verifying that the domain of continuous 

variables, ΩZ, is divided into hypercubes, the domain of the discrete variables, ΩY, is 

divided into arbitrary sets, and such that φ is defined as  

 φ(x) = φi(x) if x ∈ Ωi,  

where each φi, i = 1, …, k can be written in the form of equation (3.1)  
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 In the definition above, k is the number of pieces and m is the number of 

exponential terms in each piece of the MTE potential.  

 Mixtures of truncated exponentials (MTE) are an alternative to discretization and 

Monte Carlo methods for solving hybrid Bayesian networks. Any probability density 

function can be approximated by an MTE potential, which can always be 

marginalized in closed form. 

 Consider a normally distributed random variable X  with mean μ and variance  

σ2 > 0. The PDF for the normal distribution is  

fX(x) =  
21 exp 1/ 2

2
x μ

σπσ

⎧ ⎫−⎪ ⎪⎛ ⎞−⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 A general formulation for a 2-piece, 3-term unnormalized MTE potential which 

approximates the normal PDF is as follows [Cobb and Shenoy, 2006a]. 

 

1

1

( 0.010564 197.055720exp{2.2568434( )}

461.439251exp{2.3434117( )}

264.793037 exp{2.4043270( )}) 3

( ) ( 0.010564 197.055720exp{ 2.2568434( )}

461.439251exp{ 2.3434117( )}

x

x

x if x

xx

x

μσ
σ

μ
σ

μ μ σ μ
σ

μψ σ
σ

μ
σ

−

−

−
− +

−
−

−
+ − ≤ <

−′ = − + −

−
− −

264.793037 exp{ 2.4043270( )}) 3

0

x if x

otherwise

μ μ σ μ
σ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪

−⎪+ − − ≤ <⎪
⎪
⎪
⎪⎩

 (3.2) 

  The properties of the MTE potential in (3.2) are as follows: 
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(1) 
3

3

( )x
μ σ

μ σ

ψ
+

−

′∫ dx = 
3

3

( )Xf x dx
μ σ

μ σ

+

−
∫  = 0.9973 

(2) 
3 3 3

3 3

( ) ( ) ( ) ( ) 0.49865X Xx dx x dx f x dx f x dx
μ σ μ σ μ μ σ

μ σ μ μ σ μ

ψ ψ
+ + +

− −

′ ′= = = =∫ ∫ ∫ ∫  

(3) ψ′ ≥ 0 

(4) ψ′(x) is symmetric around μ. 

 A normalized version of the 2-piece, 3-term MTE approximation to the normal 

PDF is as follows: 

 ( ) (1/ 0.9973)* ( ).x xψ ψ ′=  (3.3) 

 Following are the properties of the normalized MTE potential in (3.3): 

(1) 
3

3

( ) 1x dx
μ σ

μ σ

ψ
+

−

=∫  

(2) 
3

3

( )x x dx
μ σ

μ σ

ψ μ
+

−

=∫  

(3) 
3

2 2

3

( ) ( ) 0.98187x x dx
μ σ

μ σ

μ ψ σ
+

−

− =∫  

 MTE potentials are a nice alternative to Mixtures of Gaussians as an inference 

tool in hybrid Bayesian networks. MTE potentials can be used for inference in hybrid 

Bayesian networks that do not fit the restrictive assumptions of the conditional linear 

Gaussian (CLG) model. Mixtures of truncated exponentials Bayesian networks with 

linear deterministic variables can be solved easily using the Shenoy-Shafer 

architecture for finding marginals of large multivariate distributions represented as a 
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Bayesian network.[Cobb and Shenoy, 2005]. PERT Bayesian networks may have 

max deterministic nodes which are nonlinear. But we will show that such networks 

can also be solved using MTE’s. In the following section we will transform a PERT 

network into a PERT Bayesian network which we later going to approximate using 

mixtures of truncated of exponentials. As the last step we are going to solve the 

resulting MTE PERT Bayesian network using the Shenoy-Shafer architecture. 

3.3  Solving a PERT Network Using Mixtures of Truncated 

Exponentials 

3.3.1 Representation of a PERT network as a Bayesian network 

Consider the PERT network given in Figure 3.1. This network represents a project 

with the activities A1, A2 and A3. S stands for the project start time and E stands for the 

project completion time. We assume that the project start time is zero. The 

precedence constraints, represented by arcs, are as follows: The activities A1 and A2 

do not have any predecessors. The activity A3 can only be started after A1 is 

completed. The project is completed after all three activities are completed.  

A1

A2

A3

ES

A1

A2

A3

ES
 

Figure 3.1. An Example of a stochastic PERT network with three activities 
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 The distributions of activity durations are known, and we are informed that the 

activity durations A1 and A3 are positively correlated. Following the method described 

in Jenzarli[1995] this PERT network will be transformed into a PERT Bayesian 

network which allows us to depict the dependencies between the activity durations.  

 Let Di and Ci denote the duration of the activity i. As the first step of the 

transformation process, the activity durations will be replaced with activity 

completion times. The resulting network is given in Figure 3.2. 

C1

C2

C3

ES

C1

C2

C3

ES
 

Figure 3.2. The PERT example after the activities are replaced with activity 

completion times 

 As the next step, activity durations will be added with an with an arrow from Di to 

Ci, so that each activity will be represented by two nodes, its duration Di and its 

completion time Ci. The resulting network is depicted in Figure 3.3. 
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C1

C2

C3

ES

D2

D1 D3

C1

C2

C3

ES

D2

D1 D3

 
Figure 3.3. The PERT example after each activity is represented through their 

duration and completion times 

 Notice that the completion time of the activities which do not have any 

predecessors will be the same as their durations. Hence, as the next step of the 

transformation process, the activities A1 and A2 are going to be represented just by 

their durations, as D1 and D2. We assume that the project start time is zero with 

probability 1. The resulting network is given in Figure 3.4 below. We assume that 

each activity will be started as soon as all the preceding activities are completed. 

Accordingly, E represents the completion time of the project, which is the  

Max{D2, C3}. 
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D1

D2

C3

E

D3

D1

D2

C3

E

D3

 
Figure 3.4. The PERT example after the activities without any predecessors are 

represented just with their durations. 

 As the last step of the transformation process the dependency between the 

activities will be depicted. In this example we are informed that the duration of the 

activities D1 and D3 are positively correlated. In order to depict this dependency we 

add an arc from D1 to D3. The resulting PERT Bayes net is given in Figure 3.5 below. 

Notice that the deterministic variables, C3 and E, are depicted as double bordered 

ovals. 

D1

D2

C3

E

D3

E = Max{D2, C3}

C3 = D1 + D3D1

D2

C3

E

D3

E = Max{D2, C3}

C3 = D1 + D3

 
Figure 3.5. The resulting PERT Bayesian network 
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3.3.2 Approximation of Activity Distributions Using Mixtures of Truncated 

Exponentials 

The primary objective of this study is to compute the completion time of the project 

without setting any assumptions for activity distributions. This objective will be 

materialized by approximating the activity durations using mixtures of truncated 

exponentials and propagating the resulting mixtures of truncated exponentials 

network using the Shenoy-Shafer architecture. 

 Consider the PERT Bayes Net given in Figure 3.6. Notice that it is not a mixtures 

of exponentials Bayesian network since the activity durations D1, D2, and D3 are all 

normally distributed. In order to transform the PERT Bayes net into a MTE Bayesian 

network those activities need to be approximated using MTE’s. 

D1

D2

C3

E

D3

E = Max{D2, C3}

C3 = D1 + D3

D1 ~ N(0.4, 0.01)

D3 ~ N(0.6+D1, 0.04)

D2 ~ N(1.4, 0.01)

D1

D2

C3

E

D3

E = Max{D2, C3}

C3 = D1 + D3

D1 ~ N(0.4, 0.01)

D3 ~ N(0.6+D1, 0.04)

D2 ~ N(1.4, 0.01)
 

Figure 3.6: An example of a PERT Bayesian network 

 The probability distribution for D1 is defined as D1 ~ N(0.4, 0.01). The PDF for D1 

is approximated by a 2-piece 3 term MTE potential as follows: 
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1

1 1

1

1 1

1

1

10.027( 0.010564 197.056exp{22.5684( 0.4 )}
461.439exp{23.4341( 0.4 )} 264.793exp{24.0433( 0.4 )})}
0.1 0.4

( )
10.027( 0.010564 264.793exp{ 24.0433( 0.4 )}

461.439exp{ 23.4341( 0.4 )}

d
d d

if d
d

d
d

δ

− + − +
− − + + − +

≤ <
=

− + − − +
− − − + 1

1

197.056exp{ 22.5684( 0.4 )})}
0.4 0.7

d
if d

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪

+ − − +⎪
⎪ ≤ ≤⎩

 

 The MTE approximation of D1 overlaid on the actual normal distribution is 

depicted in Figure 3.7 below. 

0.2 0.3 0.4 0.5 0.6 0.7

1

2

3

4

 
Figure 3.7. The actual distribution of D1 overlaid on its MTE approximation 

 The probability distribution for D2 is defined as D2 ~ N(1.4, 0.01). The PDF for D1 

is approximated by an MTE potential as follows: 

2

2 2

2

2 2

2

2

10.027( 0.010564 197.056exp{22.5684( 1.4 ) 461.439
exp{23.4341( 1.4 ) 264.793exp{24.0433( 1.4 )})}

1.1 1.4
( )

10.027( 0.010564 264.793exp{ 24.0433( 1.4 ) 461.439
exp{ 23.4341( 1.4 ) 197

d
d d

if d
d

d
d

δ

− + − + −
− + + − +

≤ <
=

− + − − + −
− − + + 2

2

.056exp{ 22.5684( 1.4 )})}
1.4 1.7

d
if d

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪

− − +⎪
⎪ ≤ ≤⎩
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 The MTE approximation of D2 overlaid on the actual distribution is depicted in 

Figure 3.8 below. 

1.2 1.3 1.4 1.5 1.6 1.7

1

2

3

4

 
Figure 3.8. The actual distribution of D2 overlaid on its MTE approximation 

 The probability distribution for D3 is defined as D3|d1 ~ N(0.6+d1, 0.04). The 

conditional PDF for D3|d1 is approximated by an MTE potential as follows: 

1 3

1 3 1 3

1 3 1 1

3 3 1

1 3

5.0135( 0.010564 197.056exp{11.2842( 0.6 )} 461.439
exp{11.7171( 0.6 ) 264.793exp{12.0216( 0.6 )})}

( 0.6 )&(0.1 0.7)
( , )

5.0135( 0.010564 264.793exp{ 12.0216( 0.6 )

d d
d d d d

if d d d d
d d

d d
δ

− + − − + −
− − + + − − +

≤ < + ≤ <
=

− + − − − +

1 3 1 3

1 3 1 1

} 461.439
exp{ 11.7171( 0.6 ) 197.056exp{ 11.2842( 0.6 )})}

(0.6 1.2 )&(0.1 0.7)
d d d d

if d d d d

⎧
⎪
⎪
⎪
⎪
⎨
⎪ −⎪

− − − + + − − − +⎪
⎪ + ≤ ≤ + ≤ <⎩

 

 The plot for the MTE approximation for D3 is given in Figure 3.9 below. 
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Figure 3.9. MTE approximation for D3|d1 

 

3.3.3 Operations in MTE Networks 

 In section 3.3.1 we transformed an example of a PERT network into a PERT 

Bayesian network. Following that, in section 3.3.2, we approximated the activity 

distributions using MTE’s. As the next step, we will use the Shenoy-Shafer 

architecture to propagate in the MTE network and to compute the marginal 

distribution of the project completion time.  

 This section describes the operations necessary to carry out propagation in our 

MTE network example. The operations described here are as follows: Restriction, 

combination, marginalization, normalization, operations with linear deterministic 

equations and finding the maximum of two distributions using MTE’s. The class of 

MTE potentials is closed under these operations and this allows us to use the Shenoy- 

Shafer architecture [Shenoy and Shafer, 1990] to propagate the MTE potentials in the 
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network. The definitions of restriction, combination, marginalization and 

normalization are described in Moral et al. [2001]. The operations with linear 

deterministic variables in MTE networks are described in Cobb and Shenoy[2005]. 

The operations for finding the maximum of two distributions using MTE’s are first 

described here.  

3.3.3.1 Restriction 

Restriction is the operation of entering evidence during the propagation. In restriction, 

known variables are substituted with their values. 

 Let φ be an MTE potential for X = Y ∪ Z. Suppose we receive the evidence for a 

set of variables X′ = Y′ ∪ Z′ ⊆ X , s.t. its values x↓Ωx′ are as follows: x′ = (y′, z′). After 

receiving the evidence the values of the variables are known. Accordingly, the 

potential φ should be updated. The new potential defined on ΩX\X′ is as follows: 

 φR(X′ = x′)(w) = φR(Y′ = y′, Z′ = z′)(w) = φ(x) (3.4) 

for all w ∈ ΩX\X′ such that x ∈ ΩX, x↓ΩX\X′ = w and x↓ΩX′ = x′. In this definition each 

occurrence of X′ in φ is replaced with x′. An example for restriction will be provided 

in section 3.5.   

3.3.3.2 Combination 

MTE potentials are combined by pointwise multiplication. Let φ1 and φ2 be the MTE 

potentials for X1 =Y1 ∪ Z1 and X2 =Y2 ∪ Z2. The combination of φ1 and φ2 is a new 

MTE potential for X = X1 ∪ X2 defined as follows: 

 φ(x) = φ1(x↓X1) φ2(x↓X2) for all x ∈ Ωx 
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3.3.3.3 Marginalization 

MTE potentials are marginalized by summing over discrete variables and integrating 

over continuous variables. Let φ be an MTE potential for X = Y ∪ Z. The MTE 

potentials are closed under marginalization, so the marginal of φ for the set of 

variables X′ = Y′ ∪ Z′ ⊆ X is a MTE potential which is computed as follows:  

 φ↓X′ (y′, z′) = 
\ \

( ( , ) )
Y Y Z Z

y
y z dzφ

′ ′
∈Ω Ω

′′∑ ∫  (3.5) 

where z = (z′, z′′), and (y′, z′) ∈ ΩX′′. The variables can be marginalized in any 

sequence, discrete before continuous or continuous before discrete as shown in 

Formula 3.5.  

 In the process of marginalization, when the limits of integration include linear 

functions, then we may end up with linear terms in the remaining variables. These 

linear terms can be replaced with an MTE approximation so that the result of the 

marginalization is again an MTE potential. For a linear term x defined over the 

domain [xmin, xmax], we replace x with  

min
min max min

max min

min

max min

0.0726981( )( )(0.5*( 13.5070292 13.5070292 [ ]
( )

(0.0754406( )0.5*(13.5070364 13.5070364 [ ]
( )

x xx x x Exp
x x

x xExp
x x

−
+ − − +

−

− −
+ −

−

   (3.6) 

 The replacement of the linear terms ensures that MTE potentials are closed under 

marginalization.  
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3.3.3.4 Normalization 

Let X =Y ∪ Z be a set of variables where Y is a discrete and Z is a continuous 

variable. Let φ′ be the MTE potential for X. Normalization constant for K is 

calculated as follows: 

 K = ( ( , ) )
Y Z

y
y z dzφ

∈Ω Ω

′∑ ∫  (3.7) 

 If join trees are initialized with normalized potentials the normalization constant 

equals to one when no evidence is observed. 

3.3.3.5 Linear Deterministic Equations 

Consider the PERT Bayes net given in Figure 3.6. The variable C3 is a deterministic 

variable containing a linear deterministic equation. As we solve the MTE PERT 

network using fusion algorithm in Section 3.3.4 each variable is going to be deleted 

from the network following a deletion sequence. As variables are removed from the 

network the operations of combination and marginalization will be used, which are 

explained as above. However, the marginalization operation is different when the 

variable being deleted is contained in a linear deterministic equation in the network. If 

it is the case, then we proceed as follows: We solve the equation for the variable 

being deleted and then substitute this solution in the updated potentials in the 

network. 

 Let ψ denote the distribution of Y|x ~ fY|x and let ζ denote the equation  

Z = X + Y. Suppose we want to delete the variable Y from the network. By solving the 
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equation for Y and substituting the solution in fY|x we can remove Y out of the 

combination and hence find the distribution of Z|x. The details are as follows: 

(ζ⊗ψ)−Y = ([Z = X + Y] ⊗ fY|x(y))−Y = ([Y = Z − X] ⊗ fY|x(y))−Y =  fY|x(z −x)  

3.3.3.6 Maximum of Two Distributions 

Finding the distribution of the maximum of two or more distributions has been the 

interest of many communities of researchers. Especially in the domains of project 

management, this problem occupies an important place since the completion time of 

an activity is the sum of its duration and the maximum between the completion times 

of its immediate predecessors. For this reason, it can be concluded that an accurate 

estimation of the project completion time is very much affected by an accurate 

estimation of the activity completion times.  

 In view of that, in Section 2.3.2, we found the marginal distribution of the 

maximum of two normally distributed random variables by converting the Bayes net 

into a MoG Bayesian network and using the Lauritzen-Jensen algorithm to compute 

the marginals of the MoG Bayesian network.  

X Y

G

X ~ fX(x) Y ~ fY(y)

G = Max{X,Y}

X Y

G

X ~ fX(x) Y ~ fY(y)

G = Max{X,Y}  
Figure 3.10. Maximum of two distributions 
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 In this section, as we solve the PERT network using MTE’s, again we will need to 

find the maximum of two distributions. The marginal probability density function of 

the maximum of two distributions can be computed by brute force using order 

statistics. Consider the small BN given in Figure 3.10. X and Y are continuous 

variables which have density functions fX(x) and fY(y), respectively. G is a 

deterministic variable which is distributed as G = Max{X, Y}. Let FG denote the 

cumulative distribution function (CDF) of G, FX denote the CDF of X and FY denote 

the CDF of Y. Then, FG(g) = FX(g) FY(g). Therefore, the probability density function 

of G is given by fG(g) = (d/dg)FG(g) = fX(g) FY(g)+ FX(g) fY(g), where fX and fY are the 

PDFs of X and Y, respectively. Since there is no closed form expression for the CDF 

of a normal distribution, there is no closed form expression for fG(g) when X and Y are 

normally distributed. Since MTE potentials are closed under integration both FX(g) 

and FY(g) can be expressed as MTE potentials. And since MTE potentials are closed 

under multiplication and addition fG(g) can also be expressed as MTE potentials. 

Then, by using the MTE approximations of X and Y, we can obtain an MTE 

approximation for the distribution of fG(g). 

3.3.4 Fusion Algorithm 

The fusion algorithm, first described by Cannings et al. [1978], is used to compute 

the marginal for a variable using local computation [Shenoy, 1992]. Shenoy [1995] 

described the fusion algorithm as a guide to construct join trees where Shenoy-Shafer 

architecture will be used to compute the marginals of the variables. The basic idea of 
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the fusion algorithm is to delete all the variables in the network successively, until we 

end up with the marginal distribution of the variable of interest.  

 In this research, we are interested in computing the marginal distribution of the 

project completion time. Hence, using fusion algorithm, the variables in the MTE 

PERT Bayes net will be deleted successively, until we end up with the marginal 

distribution of the project completion time, F. Though different deletion sequences 

may lead to different computational efforts, the outcome of the network does not get 

affected with the deletion sequence used. In this example, we will use the deletion 

sequence D3, D1, (D2, C3) in order to find the marginal distribution of the project 

completion time. Figure 3.11 illustrates the construction of the join tree for the PERT 

example. The messages necessary to compute the marginal distribution of the project 

completion time are given in Table 3.1 below.  
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{E, C3, D2}

{D3, D1}

{C3, D3, D1}

{C3, D1}{D1}

{C3, D1}

{C3} {D2}

{E}

{E, C3, D2}

{C3, D3, D1}

χ3 δ3

δ1

δ2
χE

{E, C3, D2}

{D3, D1}

{C3, D3, D1}

{C3, D1}{D1}

{C3, D1}

{C3} {D2}

{E}

{E, C3, D2}

{C3, D3, D1}

{E, C3, D2}{E, C3, D2}

{D3, D1}{D3, D1}

{C3, D3, D1}{C3, D3, D1}

{C3, D1}{C3, D1}{D1}{D1}

{C3, D1}{C3, D1}

{C3}{C3} {D2}{D2}

{E}{E}

{E, C3, D2}{E, C3, D2}

{C3, D3, D1}{C3, D3, D1}

χ3 δ3

δ1

δ2
χE

 
Figure 3.11. Creation of the binary join tree using the fusion algorithm. 

Table 3.1. The domains and the potentials of the variables as the binary join tree is 

created using the fusion algorithm 

Domain Potential Distribution 

{D1} δ1 D1 ~ N(0.4, 0.01) 

{D2} δ2 D2 ~ N(1.4, 0.01) 

{D3, D1} δ3 D3| d1 ~ N(0.6+d1,0.04) 

{C3, D3, D1} χ3 C3 = D1 + D3 

{E, C3, D2} χE E = Max{D2,C3} 

 

After fusion with respect to D3 
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Domain Potential 

{D1} δ1 

{D2} δ2 

{C3, D1} (δ3⊗χ3)↓{C3, D1} 

{E, C3, D2} χE 

 

After fusion with respect to D1
 

Domain Potential 

{D2} δ2 

{C3} ((δ3⊗χ3)↓{C3, D1}⊗δ1)↓{C3} 

{E, C3, D2} χE 

 

After fusion with respect to {C3, D2} 

Domain Potential 

{E} ((((δ3⊗χ3)↓{C3, D1}⊗δ1)↓{C3})⊗δ2⊗χE) ↓{E} 

 

Fusion with respect to D3:  

 Fusion w.r.t. D3, refers to removing the variable D3 from the network. This will be 

done first by combining all the potentials that contain D3 and next by removing D3 

out of the combination by marginalizing the combination down to the remaining 

variables. Let fD3|d1 denote the distribution of D3|d1. Let χ3 denote the equation for  

C3 = D1 + D3. By solving the equation for D3 and substituting D3 in fD3|d1
 we can find 

the distribution of C3|d1. The details are as follows: 

 C3 = D1 + D3 

 D3 = C3 − D1 
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 fC3|d1(c3) = fD3|d1(c3 −d1) 

 The probability distribution of C3|d1 is approximated by an MTE potential as 

follows: 

{ , }3 1

3 1

3 1

3 1

1 3 1 1 1

3 3 3 1

5.0135( 0.010564 197.056exp{11.2842( 0.6 2 )}
461.439exp{11.7171( 0.6 2 )
264.793exp{12.0216( 0.6 2 )})}

( 0.6 )& &(0.1 0.7)
( ) ( , )

5.0135( 0.010564 264.793exp{

C D

c d
c d
c d

if d c d d d
c dδ χ

↓

− + − + −

− − + −
+ − + −

≤ − < + ≤ <
⊗ =

− + 3 1

3 1

3 1

1 3 1 1 1

12.0216( 0.6 2 )}
461.439exp{ 11.7171( 0.6 2 )

197.056exp{ 11.2842( 0.6 2 )})}
(0.6 1.2 )& &(0.1 0.7)

c d
c d

c d
if d c d d d

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪ − − + −⎪

− − − + − +⎪
⎪ − − + −⎪
⎪ + ≤ − ≤ + ≤ <⎩

 

Fusion with respect to D1: 

 The variables whose domains contain D1, (D1 itself and C3|d1), are both 

continuous variables, so deleting D1 from the network involves finding the joint  

fC3, D1(c3, d1)  and integrating this combination over the domain of D1. The details are 

as follows: 

 fC3, D1(c3, d1) = fC3|d1(c3) fD1(d1) 

 (fC3, D1(c3, d1))↓C3 = ∫fC3,D1(c3, d1) dd1= fC3(c3) 

 Notice that the MTE approximations for both fD1(d1) and fC3|d1(c3) are 2 piece three 

term MTE potentials, so when they are combined the result is an MTE potential with 

four pieces. In cases, where the domains of functions overlap, the number of pieces 

can be less than the product of number of pieces. The MTE approximation for  

fC3, D1(c3, d1) is as follows: 



www.manaraa.com

 
 

84

{ , }3 1

1 3 3 3 1

3 1

3 1

3 1

1

( ( ) )( , )

50.2704( 0.010564 197.056exp{11.2842( 0.6 2 )}
461.439exp{11.7171( 0.6 2 )
264.793exp{12.0216( 0.6 2 )})

( 0.010564 197.056exp{22.5684( 0.4 )
461.439exp{23.434

C D

c d

c d
c d
c d

d

δ δ χ
↓

⊗ ⊗ =

− + − + −

− − + −
+ − + −
− + − + −

1 1

1 3 1 1 1

3 1

3 1

3 1

1( 0.4 ) 264.793exp{24.0433( 0.4 )})}
( 0.6 )& &(0.1 0.4)

50.2704( 0.010564 264.793exp{ 12.0216( 0.6 2 )}
461.439exp{ 11.7171( 0.6 2 )

197.056exp{ 11.2842( 0.6 2 )})( 0.010

d d
if d c d d d

c d
c d

c d

− + + − +
≤ − < + ≤ <

− + − − + −

− − − + − +
− − + − − 1

1 1

1 3 1 1 1

3 1

564 197.056exp{22.5684( 0.4 )
461.439exp{23.4341( 0.4 ) 264.793exp{24.0433( 0.4 )})}

(0.6 1.2 )& &(0.1 0.4)

50.2704( 0.010564 197.056exp{11.2842( 0.6 2 )}
461.439exp{11.7171( 0.

d
d d

if d c d d d

c d

+ − + −
− + + − +

+ ≤ − ≤ + ≤ <

− + − + −
− − 3 1

3 1

1

1 1

1 3 1 1 1

6 2 )
264.793exp{12.0216( 0.6 2 )})

( 0.010564 264.793exp{ 24.0433( 0.4 )
461.439exp{ 23.4341( 0.4 ) 197.056exp{ 22.5684( 0.4 )})}

( 0.6 )& &(0.4 0.7)

50.2704( 0.010564 264.79

c d
c d

d
d d

if d c d d d

+ −
+ − + −
− + − − + −

− − + + − − +
≤ − < + ≤ ≤

− + 3 1

3 1

3 1 1

1 1

1

3exp{ 12.0216( 0.6 2 )}
461.439exp{ 11.7171( 0.6 2 )

197.056exp{ 11.2842( 0.6 2 )})( 0.010564 264.793exp{ 24.0433( 0.4 )
461.439exp{ 23.4341( 0.4 ) 197.056exp{ 22.5684( 0.4 )})}

(

c d
c d

c d d
d d

if d

− − + −
− − − + − +

− − + − − + − − + −
− − + + − − +

3 1 1 10.6 )& &(0.4 0.7)c d d d

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

≤ − < + ≤ ≤⎪⎩

 

 The expected value and variance for the marginal of C3 are calculated as 1.4 and 

0.0786. These answers are comparable with results from multivariate normal theory, 

which gives an expected value and variance of 1.4 and 0.08. The plots of the MTE 

approximations for fC3, D1(c3, d1) and fC3(c3) are given in Figure 3.12 and Figure 3.13, 

respectively.  
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Figure 3.12. The MTE approximation for fC3, D1(c3, d1) 
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Figure 3.13. The plot of the approximation for fC3(c3) 

 The next step is to find the marginal distribution of E = Max{C3, D2}which 

requires the variables, C3 and D2, to be deleted at the same time.  
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 Figure 3.14 represents the current state of our network after the variables D3 and 

D1 are removed from the network. As the next and final step, we have to find the 

project completion time E =Max{C3, D2} which requires the variables C3  and D2  to 

be deleted at the same time.  

C3
D2

E

C3 ~ fC3
(c3) D2 ~ N(1.4, 0.01)

E = Max{C3, D2}

C3
D2

E

C3 ~ fC3
(c3) D2 ~ N(1.4, 0.01)

E = Max{C3, D2}   
Figure 3.14. The conditional distribution of E after D3 and D1 are deleted from the 

network 

 As shown before, the probability density function of FE is given by  

fE(e) = (d/de)FE(e) = fC3(e) FD2(e)+ FC3(e) fD2(e), where fC3 and fD2 are the PDFs of C3 

and D2, respectively. In sections 3.3.3 and 3.3.4 the PDF’s of D2 and C3 are 

approximated as δ2 and ((δ3⊗χ3)↓{C3, D1}⊗δ1)↓{C3} respectively. As the next step, the 

CDF of these potentials are calculated to find the MTE approximation of fE(e). The 

MTE approximation for FD2(e) is calculated as follows:  
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 The plot for the approximation for the CDF of D2 is illustrated in Figure 3.15 

below.  
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Figure 3.15. Approximation for FD2(e) 
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 The approximation for FC3(e) is approximated using the following potential:  
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 The approximation for FC3(e) is represented in Figure 3.16 below. 
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Figure 3.16. MTE Approximation for FC3(e) 

 Notice that the approximations for the PDF and CDF of D2 have three and four 

pieces, respectively. With four pieces for the approximation of fC3(e) and five pieces 

for FC3(f), the number of pieces required for the approximation of fE(e) can be up to 

12 pieces. However, in this instance the domains do overlap. As a result, we have 4 

pieces for the approximation of fE(e).  

 Notice that both of the approximations for C3 and for the cdf of D2 have linear 

terms in the potentials. The approximation for fE(e) is approximated using the 

following potential: 
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 By comparing the means and variances of the approximation with the exact 

analytic results calculated with Clark’s method [1961] we can evaluate the goodness 

of our approximation. Accordingly, the mean of the marginal distribution of E is 

calculated as 1.51883 and 0.0300638, respectively. Comparing to 1.51968 and 

0.0306761 given by the exact analytic results, the approximation is quite good. The 

approximation for fE(e) overlaid on the actual distribution is given in Figure 3.17 

below. 
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Figure 3.17. Approximation of fE(e)overlaid on the actual distribution 

 After normalization, when the limits of integration include linear terms, then we 

may end up with linear terms in the remaining variables as it is the case with the 

approximation of C3 and of the cdf of D2. These linear terms can be approximated 

again using MTE potentials, such that it can ensured that the result is again an MTE 

approximation and MTE’s are closed under marginalization. However, replacing the 

linear terms with the MTE potentials causes bad accuracy in our approximations. 

3.5  Entering Evidence in a MTE PERT Network 

In this research first we transformed a PERT network into a PERT Bayesian network 

which we then solved using mixtures of truncated exponentials. We evaluated our 

results for the mean and variance of the project completion time with the exact 

analytic results calculated with Clark’s method [1961] and we evaluated the shape of 
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the marginal distribution of the project completion time by comparing to the actual 

distribution. In this context, it is natural to question our methods described in this 

research and ask for the advantage we obtain by using the methods described, instead 

of using straight forward simulation methods that are already handy.  

 With simulation methods the activity durations can be represented realistically. 

As it is the case with our methods, the activity durations can have any type of 

distribution and one can also represent the correlation between the activity durations. 

However, with straight-forward Monte Carlo simulation methods we can not include 

the observations of continuous variables and update our inferences accordingly. On 

the other hand, by transforming the PERT network into a Bayesian network and 

solving it using the Shenoy-Shafer architecture we can update our network, once 

evidence is observed, and find the posterior distributions of the activities and get a 

more accurate estimation for the project completion time.  

 Consider the PERT Bayesian network given in Figure 3.18. This is a PERT Bayes 

net with four activities A1, A2, A3 and A4. Suppose we know that the activities A1 and 

A2 will be performed by the same contractor. The quality of the work done by this 

contractor is distributed as fQ(q). The quality of the work performed by the contractor 

effects the duration of the activities A1 and A2 such that with higher quality it will take 

less time to complete these activities. In addition to these, we also have the 

information that the same contractor performs another activity similar to ours within 

the firm. This activity A4 is outside of our project but we included it in our network in 
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Figure 3.18 anyway since it will effect our later conclusions. As you can see in Figure 

3.18 the duration of activity A4 also depends on the quality of the contractor’s job.  

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

D1~ N(2d1− q, 1 )

Q~ fQ(q)

D2 ~ N(d2 − 2q, 2 )
D4~ N(d4 − q, 2 )

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

D1~ N(2d1− q, 1 )

Q~ fQ(q)

D2 ~ N(d2 − 2q, 2 )
D4~ N(d4 − q, 2 )

 
Figure 3.18. Representation of the example as a PERT Bayesian network 

 This example given in Figure 3.18 can be solved using the means of simulation 

methods as well as with the methods represented throughout this research. However, 

suppose we observe that the duration of activity A4 lasted 10 days to complete. Hence 

we have the evidence eD4 = 10. With the methods described in this dissertation this 

evidence can be incorporated in the network and the estimates for the durations can 

be updated accordingly, which is not possible using the straight forward simulation. 

With our method we can find the posterior distribution of Q after receiving the 

evidence eD4 which in turn will change the estimates for the distributions of A1 and A2 

and consequently the estimate for the project completion time. Including the 

observations in the network and updating the distributions accordingly will improve 

the quality of the inference. The PERT BN after receiving the evidence eD4 is 

represented in Figure 3.19 below.  
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D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

δ1′

Q~ f′Q(q)

δ2′

eD4 = 10

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

δ1′

Q~ f′Q(q)

δ2′

eD4 = 10
 

Figure 3.19. The PERT Bayesian network after receiving the evidence eD4 

3.6  Summary and Conclusions 

In Chapters 1 and 2 we illustrated how a PERT network can be transformed into a 

PERT Bayesian network and be solved using MoG’s. This method is promising in the 

sense that it eliminates the false assumptions made in the literature which overlook 

the true distribution of the maximum of two distributions and thus fail to compute an 

accurate estimation for the project completion time. However, we also concluded that 

the restricted nature of MoG Bayesian networks can make the inference process 

cumbersome. With this chapter we provide a different method, an alternative to MoG 

Bayesian networks, which overcomes the difficulties involved in solving stochastic 

PERT networks using MoG’s, but still possess the advantages involved in it.  

 In this research we transformed a PERT network first into a PERT Bayesian 

network which allows us to depict the dependencies between the activities. By 

transforming it into a Mixtures of Truncated exponentials network as the next step, 

we were able to use the Shenoy-Shafer architecture to propagate the MTE potentials 
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and thus to find the marginal distribution of the project completion time. Finding the 

distribution of the project completion time is important because there is no closed 

form expression for the distribution of the maximum of two normal distributions and 

this fact, previously forced the researchers to make false assumptions like the 

maximum of two normal distributions is again normally distributed. However, in this 

research we showed that by approximating the maximum of two distributions using 

MTE’s a very accurate estimation for the project completion time can be obtained. 

Comparing our results for mean and variance with the exact analytic results using 

Clark’s method [1961] our method proved to be successful. We evaluated the shape 

of our distribution by comparing to the actual distribution calculated by brute force 

using order statistics. Also in this case our approximation proved to be successful.  

 In this research both MoG’s and MTE’s are provided as tools to make inferences 

in stochastic PERT networks. With their ability to find accurate estimations for the 

true distributions of the maximum of two distributions and for the project completion 

time each can be considered as helpful in achieving our goals. However it should be 

noted that the inference process using MTE PERT networks, compared to MoG’s, is 

more straightforward in the sense that the MTE PERT networks do not force 

restrictive settings like, the inability of discrete variables to have continuous parents 

as it is the case with MoG networks. 

 Comparing our method to straight forward simulation on the other hand, the MTE 

PERT Bayesian networks possess the advantage that the observations can be 

integrated to the inference process. Once evidence is observed we can update our 
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network accordingly and find the posterior distributions of the activities and thus 

obtain a more accurate estimation for the project completion time.  

 The drawback with our method is on the other hand, that the number of 

exponential terms increases rapidly as the fusion algorithm is applied which in turn 

makes the inference process more difficult to apply. Additionally, in the process of 

marginalization, when the limits of integration include linear functions, we may end 

up with linear terms in the remaining variables. These linear terms can be 

approximated using an MTE approximation and it can be ensured that the result is 

again an MTE potential. However, replacing the linear terms with the MTE potentials 

causes bad accuracy in our approximations. 
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4 USING RADIO FREQUENCY IDENTIFICATION IN 

OPERATIONS MANAGEMENT 

4.1  Introduction 

Radio Frequency Identification (RFID) is a generic term for a variety of technologies 

that use radio waves to automatically identify individual items [Cavoukian, 2004]. 

This technology known for over 50 years, prepares to have its real bang in the 

business world after its potential for commercial applications has been realized. The 

capability of identifying individual products, ability to track the products through the 

processes, differentiates RFID from its preceding alternatives; but the real and huge 

potential of RFID systems is hidden in the massive amount of data that is captured by 

RFID systems. The following subsections discuss the current state of grocery 

shopping and the capabilities of RFID technology in the domain of operations 

management. 

4.2  Grocery Shopping 

Love it or hate it, grocery shopping occupies a significant amount of time of your life.  

It may seem as a straightforward task—all you need is just a shopping list. However, 

almost 60% of household supermarket purchases are unplanned and the result of in 

store decisions [Inman and Winer, 1999]. Even having a shopping list is sometimes 

not enough. The huge variety of products offered turns the grocery stores into 

labyrinths, so you have to be cautious not to get lost between the aisles as you search 
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for the products on your list. By the time you find the item you are looking for, you 

may be overwhelmed to see how many different brands offer the same item. 

 Grocery basket selection can be thought as a reflection of customers’ needs. 

Ideally, the products selected should represent the results of a comparison made by 

the customer based on the price and quality aspects of the products. Considering the 

nature of a simple grocery-shopping trip described earlier, a careful selection of 

products requires the devotion of a significant amount of time and energy on the 

customers’ side. On the contrary, modern life imposes time constraints on the 

customers, which make them unwilling to spend any more time for grocery shopping 

than is necessary. As a result, the explosion of the size of product assortments (more 

than 100,000 references in a large hypermarket) no longer allows for a clear 

identification of differences in quality and prices inside the product mix [Bruno and 

Pache, 2005]. 

 The situation on the retailers’ side is also not very promising. The competition 

between the grocery stores is increasing every day, forcing the retailers to find new 

ways to influence the purchase decisions of the customers. Today a wide variety of 

methods to track and analyze the customers’ behavior in e-commerce systems is 

available. For instance, amazon.com makes real-time recommendations (Customers 

who bought this item also bought…) to its customers based on the information of the 

products that have been put in a shopping cart or reviewed by the customer. However, 

in traditional retail stores, such systems are not used, and, therefore, the customer’s 

behavior is considered as a black box [Decker, 2003]. 
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 As a way to affect the consumers’ purchase decisions and to introduce new 

products, the shelf configurations of the stores are periodically rearranged. Although 

this might help the retailers to find the optimal allocation of the products, it bothers 

the customers for not being able to find the products they are looking for. 

 Another way to influence the customers’ purchase decisions is to do promotions. 

Every day hundreds of items inside the grocery stores are advertised as an effort to 

trigger the demand of customers for those products on promotion. Whether these 

special offers will become a subject of interest to customers primarily depends on 

whether the customers are aware of them or not. Studies suggest that more than half 

of the shoppers who purchased an item that was on sale were unaware that the price 

was reduced [Mittal, 1994]. To inform the customers about your ongoing promotions 

you may increase the rate of your advertisements, which will increase your costs 

significantly. 

 Advertisements and promotions are two effective ways to influence sales. 

However, an advertisement of a promotion will be more successful, if the promotion 

is particularly advertised to those shoppers who are likely to be interested in the offer. 

Clearly, the purchase of a product on promotion by an informed customer does not 

only show the success of the promotion; it is also a valid indicator of customers’ 

interest in that particular product. Thus, the success of a promotion secondarily 

depends on whether a customer is interested in that product or not. 

 In order to understand the underlying patterns of customers’ purchase decisions, 

most grocery stores identify its customers through customer loyalty cards via which 
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they keep track of the products purchased by the customer. Based on this information 

they tailor promotions to individual customers by giving discount coupons at the 

checkout. However, these promotions happen after the shopping is over which 

tremendously reduces the impact of the promotion on the sale. The companies are 

mostly incapable of influencing the customers’ decision making process when they 

are shopping since the data about the customers’ shopping behavior is only available 

after the decisions are made, i.e., after the shopping is over. 

 As a way to interact with the customer during the shopping, grocery stores install 

kiosks from which customers can get information about the ongoing promotions and 

the products displayed. However, stress and time pressure potentially force a 

customer to fully concentrate on the original task where the customer is not willing or 

able to learn the operation of a complex shopping support system [Schneider, 2004]. 

 Having considered all of this, the e-commerce seem to have a huge advantage 

over traditional grocery shopping because of their capability to make targeted 

advertising at the same time as the consumer is shopping. Inspired by the real-time 

recommendation systems of e-commerce we should be looking for ways to transfer 

the methods of e-commerce systems to the current state of grocery shopping. The 

capability of RFID technology to identify individual products and collect real time 

data about the customer behavior inside a store makes a new model for the traditional 

grocery shopping feasible. 

 The following section describes the RFID technology and its capabilities in the 

domain of operations management.  
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4.3  Radio Frequency Identification 

 An RFID system consists of two basic parts: a tag and a reader. Readers, 

depending upon design and technology used, may be a read-only or a read-write 

device [Finkenzeller, 1999]. They capture the information stored or gathered by the 

tag. The RFID tags can be either active or passive, depending whether they have their 

own power supply or not. Active RFID tags offer superior performance. Because they 

are connected to their own battery, they can be read at a much higher range-from 

several kilometers away. However, they are larger and more expensive. Passive tags 

have no power source and no on-tag transmitter, which gives them a range of less 

than 10-meters and makes them sensitive to environmental constraints [Cavoukian, 

2004]. 

 Among the automatic identification systems, barcode technology has been the 

leader for over 20 years. Nevertheless, with the decreasing cost of the RFID tags, 

companies have begun to favor RFID systems over barcode technology. Although it 

is a fact that the reduced costs of the RFID tags have contributed a lot to the present 

popularity of the RFID systems, this is not the main motive why the RFID systems 

are preferred over barcodes. In Table 4.1, we illustrate the potential benefits that 

companies may achieve in their operation management activities by using RFID 

systems instead of the barcodes. 
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Table 4.1: The potential benefits of RFID systems in operations management 

activities. 

 Barcode RFID Potential benefit of RFIDs 

Data capturing 
capacity 

A barcode can 
hold only around 
1000 characters of 
data. [Mital, 
2003] 

Up to 128,000 
characters in an 
RFID chip [Mital, 
2003]. 

The superior data capturing capacity of 
RFID systems offers enough room for a 
unique serial number, expiration date or 
other pertinent information [Sweeney, 
2005] 
-This is a serious drawback of bar codes 
compared to the RFID systems since in 
RFID systems information is specific to 
that individual item [Cavoukian, 2004]. 

Cost 

The barcode 
system is still a 
much cheaper 
identification 
system than the 
RFID technology 
and the experts 
predict that it will 
remain to be so. 

Today Passive 
RFIDs sell for less 
than 50 cents in 
high volumes, and 
analysts predict 
they’ll sell for five 
cents in high 
volumes by the end 
of this decade 
[Dipert, 2005]. 

Tags are reusable and have very long 
lives, so in supply chain operations 
where containers are continually reused, 
there would be no need to re-label the 
containers, saving on manpower and 
other costs associated with label 
production and fixing [Hopwood, 2005].

Processing 
times 

Only one item can 
be read at a time 
because of the 
line of sight 
technology 
required. 
-The existence of 
dirt or dust can 
avoid the reading 
barcodes. 

RFID tags can be 
read in harsh 
environments such 
as snow, fog, etc. 
with a reading 
distance ranging 
from 50 feet to 100 
meters and beyond 
[Cavoukian, 2004] 

The processing times of items increases 
significantly, when bar code systems are 
in use. 

The query of 
components 
and 
subassemblies 

Requires 
positioning the 
cases so that the 
labels can be read 
by the scanners 
-line of sight 
reading is 
required 

Automatic check 
that all items from 
the bill of material 
-are received 
-are placed in the 
right location 
-RFID does not 
require positioning 
the cases 

Convenience in order processing 
-helps to decrease the labor costs 
-reduce the order preparation times 
[Rutner, 2004] 

A valid source 
of information 
in order 
preparation 
and processing 

not applicable 

How much time a 
worker spends on 
the preparation of a 
particular item can 
be measured 

Management could use this data for 
-setting benchmarks 
-evaluating employees 
-planning labor requirements 
[Rutner, 2004] 
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Prevention of 
Spoilage not applicable 

Sensor-equipped 
tags can monitor the 
environment 
surrounding 
perishable items and 
maintain a history 
of environmental 
changes 

RFID systems can be used 
-to detect potential spoilage conditions 
[Curtin, 2005] 
-to identify the causes of spoilage 

Prevention of 
Theft not applicable 

The capability to 
locate every 
individual product 
within the inventory

Provides a tremendous opportunity for 
companies to prevent theft 

Prevention of 
Shrinkage 

Real time data is 
not available 

Automatic 
collection of real 
time data 

-the automatic collection of real time 
data prevents the shrinkage problem, 
and if not, makes the data available to 
detect the cause of shrinkage 
-better replenishments decisions can be 
made since accurate data are readily 
available with RFID [Lee, 2004] 

Prevention of 
Stockouts 

Captures 
information on 
how much is sold 
form each product

Captures 
information about 
the real time data of 
the current 
inventory (how 
much is sold, how 
much is missing) 

The ability of RFID systems to prevent 
and detect when theft and/or shrinkage 
is present, makes the data more accurate 
thus preventing the occurrence of 
stockouts 

 

4.4  Summary and Conclusions 

The use of RFID systems in commercial applications is an emerging trend and RFID 

is ready to place itself as the dominant technology used in real word applications. 

However, the importance of RFID technology is not just limited by the convenience it 

provides. More importantly, RFID systems create massive amounts of data, which 

gives the ability to track and trace materials at the case-level within the supply chain, 

and at the item level from manufacturing to post sales. Therefore, the real question to 

be answered is: How we can transform this massive amount of data into managerially 

useful information? 
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5 USING RFIDs AND COLLABORATIVE FILTERING FOR 

TARGETED ADVERTISING 

5.1  Introduction 

As mentioned earlier the real potential of RFID systems is hidden in the massive 

amount of data collected through RFID. This application is a perfect illustration of 

that. We can use the RFID technology for getting real time information about the 

consumer behavior as they are shopping and that may enable us to inform the 

customer about the promotions in store in which the customer is likely to be 

interested. Using RFID we can get information about the products a customer is 

placing in his shopping basket, and using collaborative filtering we can advertise 

those products on promotion in which the customer is more likely to be interested 

based on what is already in the customer’s shopping basket. 

5.2  Collaborative Filtering  

Collaborative filtering, first introduced by Resnick et al. (1994), is defined as 

predicting preferences of an active user given a database of preferences of other users 

[Mild, 2002]. Depending on the technology used, recommendation systems are 

classified in two classes, content-based filtering (CBF) and collaborative filtering 

(CF). Content-based methods make recommendations by analyzing the description of 

the items that have been rated by the user and the description of items to be 

recommended [Pazzani, 1999]. The main difference between collaborative filtering 
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and content-based filtering is that CF does not rely on the content descriptions of the 

items, but depends purely on preferences expressed by a set of users [Yu et al, 2004]. 

Since collaborative filtering does not depend on error-prone machine analysis of 

content, it has significant advantages over traditional content-based filtering (ability 

to filter any type of content, etc.) [Herlocker et al., 2000]. 

 In e-commerce, collaborative filtering is widely used as a tool for targeted 

advertising. Using the capabilities of RFID, we might be able to transfer this method 

to traditional retail stores and base the advertisements on real-time data. 

 The technique used in collaborative filtering is based either on explicit or implicit 

voting. The data sets in explicit voting contain users explicit preference ratings for 

products. Implicit voting refers to interpreting user behavior or selections to impute a 

vote or preference [Breese et al., 1998]. Our case is an example of implicit voting, 

since our model will use binary choice data that identifies whether a product is placed 

in cart or not. 

5.3  Model 

The model we are proposing is as follows. We are assuming a scenario where all 

products have RFID tags, and grocery carts are equipped with RFID readers. The 

carts in the grocery store are equipped with an RFID scanner, which is utilized to 

collect information on the products that are placed in the customers’ cart. In each cart, 

there is also a small screen where the promotions are displayed. The basic idea of our 

model is to inform the customer about those products on promotion that are most 
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likely to be purchased by the customer. The selection of the product advertised is a 

dynamic decision making process since it is based on the information of the products 

placed inside the cart while customer is shopping. Collaborative filtering will be used 

for the identification of the advertised product and Bayesian networks will be used for 

the application of collaborative filtering.  

 At the beginning of the shopping process, there are no products in the cart. At this 

stage, the system can just display those products on promotion that have the highest 

marginal probabilities. As the customer places products in the cart, the system can 

display those products that the customer is likely to be interested in purchasing based 

on items in the cart. The next section describes the data set used for the demonstration 

of our model. 

5.3.1 Netflix Data Set 

The proposed model above requires data captured through RFID systems for the 

different market baskets of the customers. For demonstration of the working 

mechanism of the proposed model, we used a random selection from the data set 

available for the Netflix prize competition [Netflix, 2007]. The Netflix prize 

competition seeks to substantially improve the accuracy of predictions about how 

much someone is going to love a movie based on the ratings of the movies they have 

already seen. 

 The training data set of the Netflix prize competition constitutes of 17,770 files, 

one per movie. Each file contains customer ID, the rating given by the customer, and 

the date of the rating. The ratings are on a scale from 1 to 5, 5 as being the best rating 
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possible. For the analysis done in this paper, 1,695 movie files from this training data 

set have been chosen on a random basis. These separate data files are merged into a 

big data set where the ratings for the movies are sorted based on the customer ID and 

the date has been dropped out. 

 The goal of our model is trying to predict the products that the customer may be 

interested in based on the products that she has placed in the cart. Trying to interpret 

the customers’ behavior suggests the need for implicit voting instead of a detailed 1 to 

5 rating scale. Hence, we transformed our data set into a new data set where the 

ratings 3, 4 and 5 are replaced by 1’s as an indicator of the customers’ positive 

preference for the movies. If the customer has rated the movie as 1 or 2 or has not 

rated the movie at all, then the movie rating is replaced with a zero, which means that 

it is not in the cart. Here we are assuming that the movies not rated by the customer 

are movies that are not in the customer’s cart. 

 In a grocery store, there are literally hundreds of thousands of different products. 

For the problem of finding associations between the products that are in carts, we 

need to aggragate products. For example, tomato sauce may be sold in different 

brands, different sizes, different packaging, etc. and all of these need to be aggregated 

into a single product.1 The problem of finding a good aggregation can be a difficult 

one. We need to decide on a number of aggregated products, and a technique to do 

                                                 

 

1In the first iteration, we selected 33 movies that had a large number of user ratings (without doing cluster analysis) and used it to 
learn a Bayes net. However, that was not very effective in predicting the baskets of users in the test set (lift over marginal was 
about 0.04364) 
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the aggregation. The optimal number of aggregated products is an empirical question, 

and an approximate number can be found by experimentation.  

 After transformation of the data to the desired format, the next step was to select 

the movies that are going to be used for creating a Bayes net. In order to select the 

movies from different groupings we used cluster analysis. The FASTCLUS procedure 

in SAS was used for cluster analysis, where we limited the maximum number of 

clusters obtained to thirty2. As a result, we obtained 30 different clusters and chose 

one movie from each cluster on a random basis. The final data set used to build the 

Bayes Net constitutes the movie preferences of 65,535 users for the 30 movies 

selected. The set of movies selected appears in the Bayes net model shown in Figure 

5.1. 

 Our motivation for learning a Bayes Net is to find the predictive relationships 

between the movies based on the movies liked or disliked by the customer. WinMine 

[Heckerman et al., 2000], a tool developed at Microsoft Research, is used to learn a 

Bayes Net. Using WinMine, the data is divided into a training set and a test set. We 

performed a 70/30 train/test split and had 45,874 training cases and 19,661 test cases.  

All of the variables are used as input-output variables (both predicted and used to 

predict). To set the granularity of the Bayesian network learnt by WinMine, a factor 

called kappa is used, which a number between 0 and 1. As kappa approaches 1, the 

                                                 

 

2 We did not attempt to determine an optimal (or an approximate) number here. We picked thirty for convenience. Since we 
obtained good results, we did not experiment with other numbers.  
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model becomes very dense. Since our model is already quite dense, we decreased the 

value of kappa from its default value of 0.01 to 0.00001. The resulting BN is given in 

Figure 5.1. 

The accuracy of the learned model on the test set is evaluated using the log score 

Score(x1, …, xN) = (∑ =

N

i 1
log2p(xi|model))/nN, where n is the number of variables in 

X, and N is the number of cases in the test set. Our model results in a log score of 

−0.4169, meaning on average, the log probability that each variable assigns to the 

given value in the test case, given the values of all other variables , is −0.4169, which 

translates to a probability of 0.75. Using WinMine we can also compare the 

difference between the provided model and the marginal model. A positive difference 

is desired between the provided model and the marginal model, signifying that the 

model out-performs the marginal model on the test set. The marginal model uses the 

marginal probabilities of the products in the data set, ignoring the information about 

the products that are placed in cart. In the same way that a regression model is more 

accurate than a simple baseline model chosen in the form of a mean dependent value, 

the “lift over marginal” log score provides information on how well the model fits the 

data. The lift over marginal log score in our model is 0.1302, which suggests the 

performance of our model is quite good3. If we ignored the products in the cart and 

used the marginals for prediction, the average probability of the correct prediction is 

                                                 

 

3 The lift over marginal log score for the Bayesian network model in the WinMine toolkit tutorial is 0.0890. In comparison, our 
results compares favorably. 
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0.68 (or log score of −0.5471). Using the products in the cart, the average probability 

of correct prediction improves to 0.75 (or log scoreof -0.4169) resulting in a lift over 

marginal log score of (−0.4169)−(−0.5471) = 0.1302. There are many ways of 

evaluating collaborative filtering recommender systems (Herlocker et al., 2004), and 

lift over marginal is a good conservative measure of effectiveness for our application.  

5.3.1.1 Case Study 

In the previous section we have illustrated how a BN can be learned using the 

WinMine toolkit. Using the probability tables constructed by WinMine we 

constructed the same Bayes Net in Hugin, a commercial software package. The 

conditional probability table used for the movie ‘Lord of the Rings: The Two Towers’ 

is illustrated in Table 5.1 below.  

 

Table 5.1: The conditional probability table for Lord of the Rings: The Two Towers 

Lord of the Rings: The Two Towers 

Forrest 

Gump 
0 1 

Titanic 
0 1 0 1 

X-Men 

United 
0 1 0 1 0 1 0 1 

Indiana 

Jones 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 0.88 0.76 0.53 0.21 0.83 0.59 0.37 0.16 0.8 0.52 0.33 0.13 0.7 0.41 0.27 0.1 

1 0.12 0.24 0.47 0.79 0.17 0.41 0.63 0.84 0.2 0.48 0.67 0.87 0.3 0.59 0.73 0.9 

 
 



www.manaraa.com

 
 

113

 
Figure 5.1: A Bayes net for 30 movies from the Netflix prize dataset. 

 The advantage of using Hugin is that we are able to enter evidence to the BN and 

update all probabilities accordingly using the ‘sum normal’ propagation method. In 

addition to that, the ‘max normal’ propagation method allows us to find states to the 

most probable configuration. The state of node with the most probable configuration 

is given the value of 100. The values for all other states are the relative values of the 

probability of the most probable configuration in comparison to the most probable 

configuration. 

 By using the sum-propagate normal propagation method without entering any 

evidence, we obtain the marginal probabilities for all the movies in the BN. The 

results suggest that for the state ‘1’ the movie ‘The Green Mile’ has the highest 
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marginal probability 40.57%, and ‘Duplex’ has the lowest marginal probability 

5.23%. 

 Suppose we want to predict whether a specific customer is going to like the movie 

Forrest Gump or not. Without having any information about the customers’ previous 

movie preferences the marginal probability for the state ‘1’ is 40.43% and the state 

for the most probable configuration is ‘0’. Suppose we get the information that the 

customer rented the movie A Few Good Men and liked it. Accordingly, the posterior 

marginal for Forrest Gump increases to 69.75%, the most likely state is still ‘0’. Next, 

suppose we get the information that the customer also liked The Wizard of Oz. The 

posterior marginal probability for Forrest Gump increases to 90.13% and the most 

likely state changes to ‘1’. The results for this case are summarized in Table 5.2 

below and the revised Bayes net is given in Figure 5.2 below. 
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Figure 5.2: The revised Bayes net after entering the evidence 

Table 5.2: Posterior probabilities and most likely state for Forrest Gump 

Information & Rating Marginal Most likely state 

Prior 40.43% 0 

A Few Good Men = 1 69.75% 0 

Wizard of Oz =1 90.13% 1 

 

 As our second case, consider a scenario where we need to choose between the two 

movies Mona Lisa Smile and Lord of the Rings: The Two Towers to recommend to 

the customer. The initial most likely state is ‘0’ for both movies. Based on their 

marginal probabilities, which are given in Table 5.3 below, Lord of the Rings: The 
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Two Towers should be chosen for recommendation, since it has a much higher 

marginal probability for the state ‘1’. 

Table 5.3: Posterior probabilities and most likely states for Mona Lisa Smile and 

Lord of the Rings: The Two Towers 

 Mona Lisa Smile 
Lord of the Rings: 

The Two Towers 

Information & Rating Marginal 
Most 

likely state 
Marginal 

Most likely 

state 

Prior 19.28% 0 33.85% 0 

Pay It Forward = 1 36.86% 0 48.08% 0 

Something’s Gotta Give = 1 63.05% 0 61.37% 0 

Two Weeks Notice = 1 72.22% 1 63.23% 0 

Titanic = 1 76.00% 1 67.38% 1 

 

 Suppose we receive information about movie preferences of the customer to 

whom we are going to make the recommendation. Learning that the customer liked 

Pay It Forward, Something’s Gotta Give, Two Weeks Notice and Titanic with the 

particular order given, changes the posterior marginal probabilities. Until we obtain 

the information that the customer liked Something’s Gotta Give, the marginal 

probabilities indicate that Lord of the Rings should be chosen for recommendation. 

After subsequent observations, Mona Lisa Smile takes the lead for recommendation. 

At the point where we learn that the customer liked Titanic, the most likely state for 
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both of the movies becomes ‘1’ where for Lord of the Rings it is ‘0’ still. After we get 

the information that the customer also liked the movie Titanic the most likely state for 

both of the movies becomes’1’. The details of posterior marginal probabilities and the 

most likely states are given in Table 5.3 above. The revised Bayes Net is given in 

Figure 5.3 below. 

 
Figure 5.3: The revised Bayes net after entering the evidence in the second case 

5.3.2 Grocery Data Set 

In the first part of this research we illustrated our application using the publicly 

available Netflix price competition data set. While it is not quite the same, we were 

able to convert the Netflix dataset with movies as the products instead of grocery 
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items. As described in section 5.3.1, the Netflix data set constitutes of the ratings 

given by the users. Ratings data sets can be quite informative for the researchers since 

they provide information about the preferences of the subjects of the data pool. On 

the other hand, the collection of the ratings data sets is mostly based on the voluntary 

participation of the users, which causes the actual data pool to be veiled when there is 

a lack of ratings. This fact about the ratings data set forced us to make the assumption 

in our analysis, that the movies not rated by the customer were movies that were not 

in the customer’s cart.  

 As the next step of this research, we are going to construct our proposed model 

using real grocery data which enables us to eliminate the assumption made before, 

hence obtaining a more accurate representation of the application we are proposing.  

 The data set we are going to use is a retail market basket data set, supplied by an 

anonymous Belgian retail supermarket store [Brijs et al, 1999]. The data has been 

collected over three non-consecutive periods, resulting in approximately 5 months of 

data. Each line in the data set corresponds to a shopping basket. The distinct items in 

the data set are encoded by numbers4, but the information to which products those 

numbers correspond is not provided in the data set. We also do not know how many 

of the same product is present in a single shopping basket. 

                                                 

 

4 Although most of the products are identified by a unique barcode, some article numbers in the data set represent a group of 
products rather than an individual product item [Brijs. et al, 1999]. 
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 In total, the data set contains the product information of 51,273 different shopping 

baskets which has been purchased by 5,133 different customers. The number of 

distinct products included in the data set is 14,472. The average number of distinct 

items per visit is 13 but in most of the shopping baskets there are about 7 to 11 

distinct items.  

 Remember for our analysis, we are only interested to know whether a product is 

present in the shopping basket or not. The quantity of the products purchased does not 

matter for us. In order to be able to do our analysis, we either had to create a huge 

matrix where rows correspond to 51,273 different shopping baskets and columns 

correspond to the different 14,472 products or we had to transform the data into a 

form where there are only two columns, the basket ID and the product ID. In order to 

achieve efficiency in our analysis we selected the second choice. After 

transformation, every single row in the data set gives information about one shopping 

basket and one product that is placed inside. Thus, the same basket can be seen in as 

many rows as the number of products in it.  

  Using the entire data set to construct the BN is not possible since the huge 

number of different products correspond to 14,472 variables in the BN. To learn a BN 

of that size, a much higher quantity of market basket data is necessary than it is 

available in this data set. 

 Remember in the first part of this research we used cluster analysis as the 

aggregation technique. The basic idea of our approach was that people tend to watch 

different kinds of movies depending on various reasons (like the mood they are in). 
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For that reason we chose one movie from each cluster on a random basis and created 

our BN using those movies. The results we got using this approach proved to be 

successful. We got a lift over marginal of 0.1302 which corresponds to about 7% 

improvement in our predictions. However, grocery data possess different 

characteristics compared to the Netflix data set which suggests our approach for 

analyzing the data needs to be updated. 

 The way customers tend to select the products in a single shopping is different 

than the way they select movies. Depending on the purpose of a single grocery 

shopping the products selected may tend to belong to the same grouping. In this 

context, aggregation techniques might help for a better analysis, nevertheless the 

information we have in the grocery data set is much more limited compared to the 

Netflix data set. In the Netflix case we were fully aware of the movies included in the 

data set. On the contrary, by the grocery data set we do not have any information 

about the products that are present in the data set. The grocery data set includes the 

information of 51,272 market baskets which include 14,472 distinct products. But the 

number of the different customers these 51,272 market baskets refers to is only 5,133 

and the majority of products are only present in a few baskets whereas five products 

with the highest purchase frequencies amount to about 16% of the whole data set. On 

the other hand, for the Netflix data set, the number of different users was 65,535, 

providing a much larger scale of information about users’ preferences. Considering 

all of these, we conclude that cluster analysis is not the right method and a different 
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approach needs to be used to select the products that are going to be used to create the 

BN.  

 The purpose of this study is to recommend the products to the customer in which 

(s)he will be interested and which is likely to be purchased by the customer. For that 

reason, we use Bayes nets to learn the predictive relationships between the products. 

However, the information gathered from a BN is closely related to the structure of the 

data set used to learn that BN. For grocery data sets; it is almost always the case that 

some products like milk, egg and bread, are purchased on a regular basis by the 

customers. As a result, they occupy the top of the list as the most purchased products 

in the data set, leaving a wide gap behind for the followers. A BN created from such a 

data set, will naturally show high dependencies between those most purchased 

products and many others in the data set. This is an expected result, for that those 

products constitute a big part of the whole data set. Referring this as a reference on 

the other hand, may result in making recommendations of milk or eggs for every 

possible kind of product placed in the shopping cart. It should be noted that, being 

purchased at the same shopping trip does not always necessarily show the tendency 

for those products to be purchased together by the customers. It may just be the result 

of high and uneven (compared to other products) purchase frequencies of those 

products that are purchased on everyday basis.  

 When we look to our grocery data set we see the picture described above. There is 

a huge gap between the frequencies of the top five most purchased products and the 

rest of the data set. About 55% of the 14,472 distinct products in the data set are 
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present in only 10 baskets or less. In contrast, this number is 82,040 for the top five 

products in total5. Anticipating these are the products that are bought on a daily basis 

(like milk, egg etc) we are going to exclude them from the selection process of the 

products to create the BN.   

 With this application proposed, we aim to make recommendations based on the 

products placed in cart. Hence, in order to achieve an accurate demonstration of a 

single grocery shopping the products used in the BN should be representative for a 

market basket, meaning that they are likely to be purchased on the same shopping 

trip. For it is necessary to update our approach because of the different characteristics 

of the grocery data set, we will use  the conditional probability tables obtained 

through the BNs we create to see the associations between  the products, hence to 

select the products to be used in the final Bayes net we create.  

 The Bayes nets inform us about the conditional independencies and the 

conditional probabilities of the variables. Thus, for each variable used in a BN, we 

may obtain the conditional probability table associated with that variable. Our basic 

idea is to use this information contained in the BNs as a selection basis to identify the 

products that have high associations with each other; the ones that are likely to be 

purchased on the same shopping trip. 

 We proceed as follows: The first step of the heuristic is to select a certain number 

of products that are going to be used to create the BN. In this case, excluding the top 

                                                 

 

5 This number is the sum of each of these products’ count for the baskets they are in. 
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five, we selected the 25 products that have the highest purchase frequencies, so we 

have enough data available to build the BN.  This way we avoid resulting in poor 

recommendations as a consequence of the high and uneven frequencies of the daily 

consumed products. The BN created with those 25 products is given in Figure 5.4 

below.  

 

 
Figure 5.4. The BN created using 25 products with high purchase frequencies 

 The main purpose to create this BN is to obtain the information about the 

dependencies between the products and to learn the conditional probability tables. 

Using conditional probability tables we can observe the change on the purchase 

probabilities of a child node depending whether the parent product(s) is present in 
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cart or not. This change is high for some products, indicating that they are highly 

associated with their parents and low for some, as a result of weak associations.  

 Consider the conditional probabilities of the product p_271 given in Table 5.4. 

The purchase probability of the p_271 increases from 0.037 to 0.365 when p_270 is 

included in the basket. The purchase probability of p_271 increases even to 0.418 

when the product p_2238 is placed in the basket. These high changes in the purchase 

probabilities of p_271 suggest that this is an example of a product which is highly 

associated with its parents. 

 In contrast, consider the case illustrated in Table 5.5. The conditional probabilities 

of product p_533 indicate that the purchase probability of p_533 drop when the 

parent products, p_170 and p_65, are included in the basket. This is a sign of weak 

associations of the child product with its parents indicating that it is not very likely 

that they are going to be included in the same shopping basket. 

Table 5.4: The conditional probability table for p_271 given its parents 

Probability table for p_271 

p_2238 p_270 (p_271 = 0) (p_271 = 1) 

0 0 0.963 0.037 

0 1 0.635 0.365 

1 0 0.882 0.118 

1 1 0.582 0.418 
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Table 5.5: The conditional probability table for p_533 given its parents 

Probability table for p_533 

p_170 p_65 (p_533 = 0) (p_533 = 1) 

0 0 0.956 0.044 

0 1 0.981 0.019 

1 0 0.988 0.012 

1 1 0.986 0.014 

 

 A way to measure the degree of change is to apply the distance formula 

2( ) /
2i i

i

n
p q

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
∑ for every possible pairs of the conditional probabilities and then 

average them. In this formula, p and q stand for the conditional probabilities of the 

child node for the different states of its parents i stands for the different states of the 

child node and n stands for the number of states of the set of parent nodes. A high 

average distance is desired as an indication of the high association of the child node 

with its parents and can be used as a reference to select the products used in the final 

BN created. The average distances of p_271 and p_533 are calculated as 0.068711 

and 0.0004 respectively. With p_271 having a higher average distance than p_533, 

our prior conclusions are verified. 

 However, the selection of the products shouldn’t be based on average distances 

solely since there may be products which are poorly associated with its parents but 
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highly associated with its children. As an example for that, consider the case 

illustrated in Figure 5.5. Product p_270 has p_2238 as its parent and p_271 as its 

child. Looking at the conditional probability table illustrated in Table 5.6, the average 

distance of p_270 from its parent is calculated as 0.0013482, which suggests that 

p_270 should not be selected to the final BN to create. However, from our prior 

findings we know that having p_270 in the cart has a huge impact on the purchase 

probability of p_2716. Not selecting a product like that would just deteriorate our 

findings.  

p_2238 p_270 p_271p_2238p_2238 p_270p_270 p_271p_271
 

Figure 5.5. The BN created using 25 products with high purchase frequencies 

Table 5.6: The conditional probability table for p_270 given its parent 

Probability table for p_270 

p_2238 p_270 = 0 p_270 = 1 

0 0.957965 0.0420349 

1 0.841851 0.158149 

 

  Ideally, we should find the distance in conditional probabilities of a parent node 

with its children, sum it with the average distance of the same node with its parents 

and use the result obtained to select the products for the BN. Nevertheless, although 
                                                 

 

6 Look at Table 5.4 
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the capture of this information is possible, it requires time consuming calculations. 

For that reason, the selection process will be materialized following the heuristic 

described below.  

 Notice that, the average distance in the conditional probabilities obtained through 

BNs shows the associations of the child node with its parents. This is another way of 

saying that it shows the association of a parent node with its child, jointly with the 

child’s other parents. Hence, the average distance in conditional probabilities can also 

be used as a reference for the level of association of a node with its child. 

Accordingly, as the first step of the heuristic, we will calculate the average distance of 

each variable’s conditional probabilities. Let dj denote this average distance, where j 

denotes variable considered. Using dj, a score called Sj will be calculated which is the 

sum of the distances of the variable of interest and its children. Thus,  

Sj = dj + ij
i

d∑ / Cj, where i denotes the child node(s) of the variable j and C denotes 

the number of j’s children. Sj   will be used as a reference to select the products that 

are going to be used in the final BN. Calculation of Sj for the product p_36 is 

illustrated in Figure 5.6 below.  
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p_1327

p_1146p_89

Sp_36 = 0.0448

dp_36 = 0.016

p_79 dp_79 = 0.0127

dp_1146 = 0.0551

dp_1327 = 0.0186p_1327p_1327

p_1146p_1146p_89p_89

Sp_36 = 0.0448

dp_36 = 0.016

p_79p_79 dp_79 = 0.0127

dp_1146 = 0.0551

dp_1327 = 0.0186
 

Figure 5.6. Calculation of Sj for the product p_36 

 The heuristic is as follows: The variable with the lowest Sj is the variable that has 

the lowest level of associations with the other variables. Hence, that variable will be 

excluded from the analysis. With the variables remaining, a new BN will be created 

and from the conditional probability tables obtained through this new BN new Sj 

scores will be calculated. These steps, (exclusion of the variable with the lowest Sj 

score and creation of the new BN) will be repeated until we end up having as many 

variables remaining as the number of variables that we want to use in the final BN.  

 Using this heuristic we will be able to find the products that have high 

associations with each other, hence the products that are likely to be purchased on the 

same shopping trip. In addition to that, with the help of this heuristic we are able to 

detect the association between the products in the data set, which are not present to a 

very high degree in the database and may be overlooked because of that in the 

analysis of the aggregate data. On the other hand, the current problems involved with 

this heuristic are mostly because of some technical difficulties. We do not have a 

system to automate the procedure. We obtain the cpt’s from the BNs created in 
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WinMine. However, WinMine does not allow copying the cpt’s, so after printing the 

tables and recreating them in Excel we find the average distances. Because of this 

problem involved, we chose the top 10 products with the highest Sj scores instead of 

discarding the variables with the lowest Sj scores one by one. With the BN obtained 

this way, we got a lift over marginal of 0.229405 which corresponds to 13.4829% 

improvement between the provided model and the marginal model. The BN created is 

given in Figure 5.7 below. 

 

  

Figure 5.7. The BN created using 10 products with highest Sj 
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5.3.2.1 Case Study 

In the previous section we illustrated the heuristic we used to create the BN of 

interest. Using that heuristic we created a BN with 10 products using WinMine 

toolkit. As the next step, using the probability tables constructed by WinMine we are 

going to construct the same BN in Hugin. That way we are going to be able to obtain 

marginal probabilities of the products. In addition, using the methods like ‘sum 

normal’ propagation and ‘max normal’ propagation in Hugin, we can enter evidence, 

update all probabilities accordingly and find states to the most probable configuration.  

 The conditional probability table used for the product p_101 is illustrated in Table 

5.7 below. Notice that there are two initial states for each product, ‘0’ and ‘1’, 

representing that the product is ‘not in cart’ or ‘in cart’, respectively. 

Table 5.7 The conditional probability table of p_101 

    p_101     

p_123 0 1 

p_438 0 1 0 1 

p_1146 0 1 0 1 0 1 0 1 

0 0.860 0.975 0.985 0.888 0.968 0.857 0.956 0.5 

1 0.140 0.025 0.015 0.112 0.032 0.143 0.044 0.5 

 

 By using the sum normal and max normal propagation methods without entering 

any evidence, we obtain the marginal probabilities for all the products and the states 

belonging to the most probable configuration. Accordingly, the product p_65 has the 

highest marginal probability 23.16% for the state ‘1’, and the product p_123 has the 
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lowest marginal probability 6.868% for the state ‘1’. Other than the product p_65, the 

most likely state for all the remaining products is ‘0’. The marginal probabilities and 

the most likely state of each product can be seen in Table 5.8 given below. 

Table 5.8. Marginal probabilities and most likely states of the products in the BN 

 Marginal for ‘0’ Marginal for ‘1’ Most likely state 

p_65 76.840 % 23.160 % 1 

p_101 88.901% 11.099 % 0 

p_110 86.3 % 13.7 % 0 

p_123 93.132 % 6.868 % 0 

p_185 92.151 % 7.849 % 0 

p_225 81.912 %  18.088 % 0 

p_270 90.352 % 9.648 % 0 

p_271 88.478 % 11.522 % 0 

p_438 90.158 %  9.842 % 0 

p_1146 91.351 % 8.649 % 0 

  

 Suppose we want to predict whether a specific customer will be interested in 

product p_271 or not. Without any other information the marginal probability for the 

state ‘1’is 11.522 % and the state belonging to the most probable configuration is ‘0’. 

According to these results it is not very much likely that the customer is going to like 

the product p_271. However, suppose through our RFID scanner we get the 

information that the customer placed product p_270 in his cart. Accordingly, the 

posterior marginal of product p_271 for the state ‘1’ increases to 37.635 %. The most 

likely state remains ‘0’ still. Next, suppose we get the information that the customer 

also replaces the product p_123 in his cart. The posterior marginal probability for the 
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product p_271 increases to 55.080 % and the most likely state becomes ‘1’. The 

results for this case are summarized in Table 5.9 below. 

Table 5.9. Posterior probabilities and most likely state for product p_271 

Information Marginal Most likely state 

Prior 11.522 % 0 

p_270 = 1 37.635 % 0 

p_123 = 1 55.080 % 1 

 

 As the second case, consider a scenario where two promotions are going on inside 

a grocery store, a promotion for the product p_225 and a promotion for the product 

p_65. The task of the manager is to decide to which customer to advertise which one 

of these two products. Based on the marginal probabilities, which are given in Table 

5.10 below, the product p_65 should be chosen since it has a higher marginal 

probability. But being able to observe what the customers are placing in their carts, 

we may change our recommendation. Suppose we observe a customer, which placed 

the products p_110 and p_123 in his basket. Accordingly, we decide to recommend 

p_225 to that particular customer, since after observing what is placed inside the cart 

the posterior marginal for p_225 increases to 36.443%, where for p_65 it is 23.189%. 

The next customer we observe has three products placed inside her cart, p_ 101, 

p_271, p_1146. With these products placed inside the cart the posterior marginal 

probability for p_65 increases to 56.170 %. Hence, p_65 will be recommended to the 

customer. The details are given in Table 5.10 below. 
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Table 5.10. The posterior probabilities and most likely states for p_225 and p_65  

 p_225 p_65 

Information Marginal Most likely 
state Marginal Most likely 

state 

Prior 18.088 % 0 23.160 % 1 

Cart 1(p_110 = 1, 
p_123 = 1) 36.443 % 0 23.189 % 0 

Cart 2 (p_101= 1,  

p_271 = 1, 

 p_1146 =1) 

45.887 % 0 56.170 % 1 

 

5.4  Summary and Conclusions 

 RFID is a technology that has a huge potential for commercial applications. This 

huge potential of RFID technology is present and known by the researchers. 

However, we are in need for new ideas which uncover this potential and transform it 

into managerially useful information. By using RFID and collaborative filtering for 

targeted advertising in grocery stores, the application illustrated in this research, 

promises to do so. With this application we are able to transfer the methods of e-

commerce to actual retail stores, which allow us to influence the customer’s decision 

making process while shopping. With this application, through real time data 

collection with RFID we will be able to increase the success of the promotions and 

furthermore as a future research topic we can get insight about the operational 

problems, such as the optimal placing of products inside a store.  
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 In this research, the application proposed is illustrated first using the data for the 

Netflix prize competition where we converted the Netflix data set with movies as the 

products instead of grocery items. While the Netflix data set is very rich in many 

aspects (like the number of users contained, the number of movies, information about 

the movies etc.), the fact that it is based on the ratings forced us to make the 

assumption that the movies not rated by the customer were movies that were not in 

the customer’s cart. As the second stage of the research, real grocery data is used 

which helped us to eliminate this assumption made before. The limitations involved 

in the grocery data set available, (not having information about the products 

contained in the data set, not having enough market basket data available compared to 

the number of distinct items in the data set etc.) gave us the incentive to develop a 

new heuristic. Using the methods of this new heuristic we were able to expose the 

information contained in a limited data set to find the products that have high 

associations with each other, hence the products that are likely to be purchased on the 

same shopping trip. In addition to that, this new heuristic may detect the association 

between the products in the data set, which are not present to a very high degree in 

the database and may be overlooked because of that in the analysis of the aggregate 

data.  

 Many grocery stores have data on users using loyalty cards. As a future research 

topic, the longitudinal information about these users can be used to improve the 

effectiveness of our system. 
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6 SUMMARY and CONCLUSIONS  

6.1  Summary and Conclusions 

Two essays are presented in this research. In the first essay “On solving stochastic 

PERT Networks” first we review the methods used to solve stochastic PERT 

networks. The current methods in the literature fail to recognize the true distribution 

of the maximum of two independent distributions and therefore make false 

assumptions about activity distributions, like the maximum of two normal 

distributions are again normally distributed. Depending on the value of parameters 

this assumption can lead to large errors for the completion time of the activities which 

leads to inaccurate estimates for the project completion time.  

 Motivated by this problem in the literature, in Chapter 2 we provided a new 

method which aims to approximate the true distribution of the project completion 

time by eliminating the false assumptions for the distribution of the maximum of two 

Gaussians. In this method, a PERT network is first transformed into a MoG Bayesian 

network and then Lauritzen-Jensen algorithm is used to make inferences in the 

resulting MoG Bayesian network. In Chapter 1, first a PERT network is transformed 

into a PERT Bayesian network [Jenzarli, 1995] which allows us to depict the 

dependencies between the activities. Following that in subsection 2.3.1 we 

demonstrated how non-Gaussian distributions can be approximated using MoG’s. In 

section 2.3.2 we investigated the problem of finding the distribution of maximum of 
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two Gaussian distributions and shown that using MoG’s an accurate estimation for 

the maximum of two distributions can be obtained. 

 In MoG Bayesian networks the discrete variables can not have continuous 

parents. Consequently as we convert PERT networks into MoG Bayesian networks 

arc reversals become necessary. This fact motivated us to work on the arc reversal 

theory. As a result, we described arc reversals between every possible pairs of 

variables. We also described a new kind of distribution called partially deterministic 

that can arise in the process of arc reversals in hybrid Bayesian networks.  

 Because of the restrictive nature of MoG Bayesian networks transforming a PERT 

network to a MoG Bayes net is too complex for practical use. As an alternative to 

MoG’s, in Chapter 3 we explored solving stochastic PERT networks using mixtures 

of truncated exponentials. MTE potentials can be used for inference in hybrid 

Bayesian networks that do not fit the restrictive assumptions of the conditional linear 

Gaussian (CLG) model. We demonstrated the easy applicability of MTE potentials by 

finding the marginal probability distribution of a PERT example using MTE’s. This 

calculation process involves the conversion of the PERT network into a PERT Bayes 

net, transformation of the PERT Bayes net into a MTE network and finally 

propagation of the MTE potentials using the Shenoy-Shafer architecture. Finding the 

distribution of the maximum of two distributions using MTE’s are first described here 

as an operation necessary to propagate in MTE PERT networks.  

 Finally, we evaluated our method by compared the mean and variance of the 

marginal distribution of the project completion time with the exact analytic results 
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using Clark’s method [1961] and by comparing the shape of our distribution with the 

actual distribution calculated by brute force using order statistics. In both of these 

cases our method proved to be successful. 

 The second essay “Using RFIDs for Operations Management” first investigates 

the potential of RFID in terms of operations management. In this research we state 

that the real potential of RFID systems is hidden in the massive amounts of data that 

is captures through RFID systems. In this context, we argued that researchers should 

be looking for ways to transform this data into managerially useful information.  

 The application we are proposing in this research is an attempt to uncover the real 

potential of RFID systems and consequently transfer the methods of e-commerce to 

actual retail stores. In our model RFID systems are used to collect real time 

information of the products placed inside a cart by customer during the shopping. 

With this information handy, collaborative filtering is used for the identification of 

the product to be advertised to the customer and Bayesian networks is used for the 

application of collaborative filtering. In this way we are able to influence the 

customer’s decision making process while shopping and to inform the customer about 

the promotions in store in which the customer is likely to be interested. 

 The application proposed is illustrated using two different data sets, the data set 

available for the Netflix prize competition where we converted the data set with 

movies as the products instead of grocery items and a grocery data set. Netflix data 

set is based on the ratings of the customers and that forced us to make the assumption 

that the movies not rated by the customer are movies that were not in customer’s cart.  



www.manaraa.com

 
 

138

 Using grocery data as the second stage of this research we were able to eliminate 

the assumption made before and hence obtain a more accurate representation of the 

reality. The limited information contained in the grocery data set motivated us to 

develop a new heuristic to find the products that have high associations with each 

other, hence the products that are likely to be purchased on the same shopping trip.  

 We used WinMine to learn the Bayes net and evaluated our models using the lift 

over marginal log score. The lift over marginal obtained with our data sets are 0.1302 

and 0.229405 for the Netflix data set and grocery data set respectively, meaning that 

the average probability of correct prediction improved about 7% with the model 

builtusing the Netflix data set and about 13.4829% with the model built using grocery 

data set. Thus, in both of these cases our models proved to be successful. 

6.2  Directions for Future Research 

With this research it is shown how the false assumptions involved in the computation 

of PERT networks can be eliminated and thus an accurate estimation of the project 

completion time can be obtained. As a future research topic a PERT network can be 

solved both using the methods described here and the current methods used in the 

literature, representing how large the errors for the project completion time estimates 

could be if the correct methods for the estimation of the project completion time is 

not in use. Additionally, we can work on a method to avoid arc reversals in MoG 

Bayesian networks, thus making our approach more friendly for practical use. 
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 With this research, we demonstrated arc reversals between every possible pair of 

variable. The arc reversal theory facilitates the task of approximating general 

Bayesian networks with mixtures of Bayesian networks arc reversals but besides that 

it is potentially useful to solve hybrid influence diagrams.  

 Many stores have data on users using loyalty cards. As a future research topic the 

longitudinal information about these users can be used to improve the effectiveness of 

our system. Additionally, our model can be altered by considering a grocery store 

which is equipped with ‘smart shelves’. The smart shelves can determine the position 

of each product that is placed on them and can recognize when products placed on it 

or removed from it [Decker, 2003]. Using this setting we can obtain information 

about the optimal placing of products inside a store. 
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APPENDIX  

A Converting the PERT Bayes Net to a MoG Bayes Net Using Arc 

Reversals 

Notice that the example of the PERT Bayes Net, given in Figure 1.2, is not a MoG 

BN. The variables C23 and F are conditionally deterministic variables that are not 

linear, and D5 has a non-Gaussian distribution. Using the techniques described in 

sections 2.3.1 and 2.3.2, these variables need to be approximated by MoG 

distributions. For that reason, as illustrated in Figure A1 below, three discrete 

variables (B5, B45, and B23) with the appropriate distributions are added to the current 

PERT Bayes Net.  
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Figure A1: Bayes Net model 

 For it is easier to show the calculations necessary, the notation of mixed potentials 

will be used in this section. In hybrid Bayesian networks, we encode conditionals by 
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mixed potentials that have two parts, a mass part and a density/equation part. The 

conditional associated with a discrete variable will have a mixed potential with 

vacuous density part denoted by ι, and the conditional associated with a continuous 

variable will have a mixed potential that has a vacuous mass part denoted by 1. Mixed 

potentials can be combined, divided, and marginalized. If α = (α1, α2), and  

β = (β1, β2) are two mixed potentials with mass parts α1 and β1, respectively, and 

density parts α2 and β2, respectively, their combination is α⊗β = (α1⊗β1, α2⊗β2), and 

their division α%β = (α1%β1, α2%β2) (assuming that the domain of αi contains the 

domain of βi for i = 1, 2). Marginalization of a mixed potential is more complex.  

If α = (α1, α2) is a mixed potential for a such that α1 is a potential for a1, and α2 is a 

potential for a2, a1∪a2 = a, and X∈a, then  

 α–X = (α1
–X, α2)   if X∈a1 and X∉a2; 

  = (α1, α2
–X)  if X∉a1 and X∈a2; 

  = ((α1⊗α2)
–X, ι)  if X∈a1, X∈a2, and a\{X} are all discrete (or mixed); 

  = (1, (α1⊗α2)
–X) if X∈a1, X∈a2, and a\{X} are all continuous (or mixed); 

If a\{X} is a mixed set of variables, then ((α1⊗α2)
–X, ι) and (1, (α1⊗α2)

–X) are 

equivalent and there is no contradiction in the definition of marginalization. In the 

next section, we will provide several concrete examples of operations with mixed 

potentials.  

 The potentials of the variables in the PERT Bayes Net given above are as follows: 
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Let δ1 denote the mixed potential at D1. Thus, δ1(d1) = (1, ϕ3, 1(d1)) 

Let δ2 denote the mixed potential at D2. Thus, δ2(d2) = (1, ϕ14, 3(d2)) 

Let δ3 denote the mixed potential at D3. Thus, δ3(d1, d3) = (1, ϕ5+2d1, 2(d3)) 

Let δ4 denote the mixed potential at D4. Thus, δ4(d2, d4) = (1, ϕ1+d2, 4 (d4)) 

Let β5 denote the mixed potential at B5. The details of the potential are as follows: 

β5(b51) = (0.051, ι) 

β5(b52) = (0.135, ι) 

β5(b53) = (0.261, ι) 

β5(b54) = (0.341, ι) 

β5(b55) = (0.212, ι) 

Let δ5 denote the mixed potential at D5. The details of the potential are as follows: 

δ5 (b51, d5) = (1, ϕ0.032, 0.0112 (d5)) 

δ5 (b52, d5) = (1, ϕ0.143, 0.0482 (d5)) 

δ5 (b53, d5) = (1, ϕ0.415, 0.1382 (d5)) 

δ5 (b54, d5) = (1, ϕ1.014, 0.3382 (d5)) 

δ5 (b55, d5) = (1, ϕ2.300, 0.7672 (d5)) 

Let β23 denote the mixed potential at B23.  

β23(b2, c3, d2) = (1, ι)  if c3 − d2 ≤ 0 

= (0, ι)  if c3 − d2 > 0 
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β23(b3, c3, d2) = (0, ι)  if c3 − d2 ≤ 0 

= (1, ι)  if c3 − d2 > 0 

Let β45 denote the mixed potential at B45.  

 β45 (b4, c4, c5) = (1, ι)  if c5 − c4 ≤ 0 

= (0, ι)  if c5 − c4 > 0 

β45 (b5, c4, c5) = (0, ι)  if c5 − c4 ≤ 0 

= (1, ι)  if c5 − c4 > 0 

The variables C3, C4, C5, C23 and F are conditionally deterministic variables, so there 

are no conditional density functions for them. Let χ denote the equations for these 

variables, so the equations of these variables are as follows: 

χ3 : C3   = D1 + D3 

χ4: C4   = C23+D4  

χ5:  C5   = D1 + D5 

χ23: C23 = D2 if B23 = b2 

C23 = C 3 if B23 = b3 

χF: F = C4 if B45 = b4 

= C5 if B45 = b5 

 In MoG Bayes nets, discrete nodes cannot have continuous parents. Looking to 

our PERT Bayes Net example we see that B23 has two continuous parents C3 and D2, 

and B45 has two continuous parents C4 and C5. In order to address this situation we are 
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going to use arc reversals. The details of each arc reversals will be given on the 

following page 
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